
Petri nets
Classical Petri nets: The basic model

prof.dr.ir. Wil van der Aalst

PN-1

Process modeling

• Emphasis on dynamic behavior rather than
structuring the state space

• Transition system is too low level
• We start with the classical Petri net
• Then we extend it with:

• Color
• Time
• Hierarchy

PN-2

Classical Petri net

• Simple process model
• Just three elements: places, transitions and arcs.
• Graphical and mathematical description.
• Formal semantics and allows for analysis.

• History:
• Carl Adam Petri (1926-2010)
− PhD thesis 1962, start of concurrency research
− e.g. Commandeur in de Orde van de Nederlandse Leeuw

• In sixties and seventies focus mainly on theory.
• Since eighties also focus on tools and applications (cf.

CPN work by Kurt Jensen).
• “Hidden” in many diagramming techniques and systems

(“token game semantics”).

PN-3

Elements

(name)

(name)

place

transition

arc (directed connection)

token

t34 t43

t23 t32

t12 t21

t01 t10

p4

p3

p2

p1

p0

place

transition

token

PN-4

Rules

• Connections are directed.
• No connections between two places or two transitions.
• Places may hold zero or more tokens.
• First, we consider the case of at most one arc between

two nodes.

wait enter before make_picture after leave gone

free

occupied

PN-5

Enabled

• A transition is enabled if each of its input places
contains at least one token.

wait enter before make_picture after leave gone

free

occupied

enabled Not
enabled

Not
enabled

PN-6

Firing

• An enabled transition can fire (i.e., it occurs).
• When it fires it consumes a token from each input

place and produces a token for each output place.

wait enter before make_picture after leave gone

free

occupied

fired

PN-7

Play “Token Game”

• In the new state, make_picture is enabled. It will fire,
etc.

wait enter before make_picture after leave gone

free

occupied

PN-8

Remarks

• Firing is atomic.
• Multiple transitions may be enabled, but only one

fires at a time, i.e., we assume interleaving semantics
(cf. diamond rule).

• The number of tokens may vary if there are
transitions for which the number of input places is
not equal to the number of output places.

• The network is static.
• The state is represented by the distribution of tokens

over places (also referred to as marking).

PN-9

Non-determinism

t34 t43

t23 t32

t12 t21

t01 t10

p4

p3

p2

p1

p0

transition t23
fires

t34 t43

t23 t32

t12 t21

t01 t10

p4

p3

p2

p1

p0

Two transitions are enabled
but only one can fire

PN-10

Example: Single traffic light

rg

go

or

red

green

orange

PN-11

Two traffic lights

rg

go

or

red

green

orange

rg

go

or

red

green

orange

rg

go

or

red

green

orange

OR

PN-12

Problem

PN-13

Solution

rg1

go1

or1

r1

g1

o1

rg2

go2

or2

r2

g2

o2

x

How to make
them
alternate?

PN-14

Exercise: Train system (1)

• Consider a circular railroad system with 4 (one-way)
tracks (1,2,3,4) and 2 trains (A,B). No two trains
should be at the same track at the same time and we
do not care about the identities of the two trains.

PN-15

Exercise: Train system (2)

• Consider a railroad system with 4 tracks (1,2,3,4) and
2 trains (A,B). No two trains should be at the same
track at the same time and we want to distinguish the
two trains.

PN-16

Exercise: Train system (3)

• Consider a railroad system with 4 tracks (1,2,3,4) and
2 trains (A,B). No two trains should be at the same
track at the same time. Moreover the next track
should also be free to allow for a safe distance. (We
do not care about train identities.)

PN-17

Exercise: Train system (4)

• Consider a railroad system with 4 tracks (1,2,3,4) and
2 trains. Tracks are free, busy or claimed. Trains
need to claim the next track before entering.

PN-18

WARNING
It is not sufficient to understand the

(process) models. You have to be
able to design them yourself !

PN-19

Multiple arcs connecting two nodes

• The number of arcs between an input place and a
transition determines the number of tokens
required to be enabled.

• The number of arcs determines the number of
tokens to be consumed/produced.

wait enter before make_picture after leave gone

free

PN-20

Example: Ball game

red

rr

rb

bb

black

PN-21

Exercise: Manufacturing a chair

• Model the manufacturing of a
chair from its components: 2
front legs, 2 back legs, 5 cross
bars, 1 seat frame, and 1 seat
cushion as a Petri net.

• Select some sensible
assembly order.

• Reverse logistics?

fl fl
bl

bl

cb
cb
cb

cb cb

sf
sc

PN-22

Exercise: Burning alcohol.

• Model C2H5OH + 3 * O2 => 2 * CO2 + 3 * H2O
• Assume that there are two steps: first each

molecule is disassembled into its atoms and then
these atoms are assembled into other molecules.

PN-23

Exercise: Manufacturing a car

• Model the production process shown in the Bill-Of-
Materials.

car

engine

subassembly1

subassembly2

wheelchassis

chair
2

4

PN-24

Formal definition

A classical Petri net is a four-tuple (P,T,I,O) where:
• P is a finite set of places,
• T is a finite set of transitions,
• I : P x T -> N is the input function, and
• O : T x P -> N is the output function.

Any diagram can be mapped onto such a four tuple
and vice versa.

PN-25

Formal definition (2)

The state (marking) of a Petri net (P,T,I,O) is defined as
follows:

• s: P-> N, i.e., a function mapping the set of places
onto {0,1,2, … }.

PN-26

Exercise: Map onto (P,T,I,O) and s

red

rr

rb

bb

black

PN-27

Exercise: Draw diagram

Petri net (P,T,I,O):
• P = {a,b,c,d}
• T = {e,f}
• I(a,e)=1, I(b,e)=2, I(c,e)=0, I(d,e)=0, I(a,f)=0, I(b,f)=0,

I(c,f)=1, I(d,f)=0.
• O(e,a)=0, O(e,b)=0, O(e,c)=1, O(e,d)=0, O(f,a)=0,

O(f,b)=2, O(f,c)=0, O(f,d)=3.
State s:
• s(a)=1, s(b)=2, s(c)=0, s(d) = 0.

PN-28

Enabling formalized

Transition t is enabled in state s1 if and only if:

PN-29

Firing formalized

If transition t is enabled in state s1, it can fire and the
resulting state is s2 :

PN-30

Mapping Petri nets onto transition
systems

A Petri net (P,T,I,O) defines the following transition
system (S,TR):

PN-31

Reachability graph

• The reachability graph of a Petri net is the part of
the transition system reachable from the initial
state in graph-like notation.

• The reachability graph can be calculated as
follows:

1. Let X be the set containing just the initial state and
let Y be the empty set.

2. Take an element x of X and add this to Y. Calculate
all states reachable for x by firing some enabled
transition. Each successor state that is not in Y is
added to X.

3. If X is empty stop, otherwise goto 2.

PN-32

Example

red

rr

rb

bb

black

(3,2)

(1,3) (1,2)

(3,1) (3,0)

(1,1)

(1,0)

Nodes in the reachability graph can be represented by a vector
“(3,2)” or as “3 red + 2 black”. The latter is useful for “sparse states”
(i.e., few places are marked).

PN-33

Exercise: Give the reachability graph
using both notations

rg1

go1

or1

r1

g1

o1

rg2

go2

or2

r2

g2

o2

x

PN-34

Different types of states

• Initial state: Initial distribution of tokens.
• Reachable state: Reachable from initial state.
• Final state (also referred to as “dead states”): No

transition is enabled.
• Home state (also referred to as home marking): It is

always possible to return (i.e., it is reachable from
any reachable state).

How to recognize these states in the reachability
graph?

PN-35

Exercise: Producers and consumers

• Model a process with one producer and one
consumer, both are either busy or free and alternate
between these two states. After every production
cycle the producer puts a product in a buffer. The
consumer consumes one product from this buffer
per cycle.

• Give the reachability graph and indicate the final
states.

• How to model 4 producers and 3 consumers
connected through a single buffer?

• How to limit the size of the buffer to 4?

PN-36

Exercise: Two switches

• Consider a room with two switches and one light.
The light is on or off. The switches are in state up or
down. At any time any of the switches can be used to
turn the light on or off.

• Model this as a Petri net.
• Give the reachability graph.

PN-37

Modeling

• Place: passive element
• Transition: active element
• Arc: causal relation
• Token: elements subject to change

The state (space) of a process/system is modeled by
places and tokens and state transitions are modeled
by transitions (cf. transition systems).

PN-38

Role of a token

Tokens can play the following roles:
• a physical object, for example a product, a part, a drug,

a person;
• an information object, for example a message, a signal,

a report;
• a collection of objects, for example a truck with

products, a warehouse with parts, or an address file;
• an indicator of a state, for example the indicator of the

state in which a process is, or the state of an object;
• an indicator of a condition: the presence of a token

indicates whether a certain condition is fulfilled.

PN-39

Role of a place

• a type of communication medium, like a telephone
line, a middleman, or a communication network;

• a buffer: for example, a depot, a queue or a post bin;
• a geographical location, like a place in a warehouse,

office or hospital;
• a possible state or state condition: for example, the

floor where an elevator is, or the condition that a
specialist is available.

PN-40

Role of a transition

• an event: for example, starting an operation, the
death of a patient, a change seasons or the
switching of a traffic light from red to green;

• a transformation of an object, like adapting a
product, updating a database, or updating a
document;

• a transport of an object: for example, transporting
goods, or sending a file.

PN-41

Typical network structures

• Causality
• Parallelism (AND-split - AND-join)
• Choice (XOR-split – XOR-join)
• Iteration (XOR-join - XOR-split)
• Capacity constraints

• Feedback loop
• Mutual exclusion
• Alternating

PN-42

Causality

PN-43

Parallelism

PN-44

Parallelism: AND-split

PN-45

Parallelism: AND-join

PN-46

Choice: XOR-split

PN-47

Choice: XOR-join

PN-48

Iteration: 1 or more times

XOR-join before XOR-split

PN-49

Iteration: 0 or more times

XOR-join before XOR-split

PN-50

Capacity constraints: feedback loop

AND-join before AND-split

PN-51

Capacity constraints: mutual exclusion

AND-join before AND-split

PN-52

Capacity constraints: alternating

AND-join before AND-split

PN-53

We have seen most patterns, e.g.:

rg1

go1

or1

r1

g1

o1

rg2

go2

or2

r2

g2

o2

x

How to make
them
alternate?

Example of
mutual
exclusion

PN-54

Exercise: Manufacturing a car (2)

• Model the production
process shown in the
Bill-Of-Materials with
resources.

• Each assembly step
requires a dedicated
machine and an
operator.

• There are two
operators and one
machine of each type.

• Hint: model both the
start and completion of
an assembly step.

car

engine

subassembly1

subassembly2

wheelchassis

chair
2

4

PN-55

Modeling problem (1): Zero testing

• Transition t should fire if place p is empty.

t ?

p

PN-56

Solution

• Only works if place is N-bounded

tN input and
output arcs

Initially there
are N tokens

p

p’

PN-57

Modeling problem (2): Priority

• Transition t1 has priority over t2

t1

t2

?

Hint: similar to Zero testing!

PN-58

A bit of theory

• Extensions have been proposed to tackle these
problems, e.g., inhibitor arcs.

• These extensions extend the modeling power (Turing
completeness*).

• Without such an extension not Turing complete.
• Still certain questions are difficult/expensive to

answer or even undecidable (e.g., equivalence of two
nets).

* Turing completeness corresponds to the ability to execute
any computation.

PN-59

Exercise: Witness statements

• As part of the process of handling insurance claims
there is the handling of witness statements.

• There may be 0-10 witnesses per claim. After an
initialization step (one per claim), each of the
witnesses is registered, contacted, and informed
(i.e., 0-10 per claim in parallel). Only after all witness
statements have been processed a report is made
(one per claim).

• Model this in terms of a Petri net.

PN-60

Exercise: Dining philosophers

• 5 philosophers sharing 5 chopsticks: chopsticks are
located in-between philosophers

• A philosopher is either in state eating or thinking and
needs two chopsticks to eat.

• Model as a Petri net.

PN-61

Preview: Analysis (Chapter 8)

• Various types of analysis techniques:
• Simulation (repeatedly playing the token game)
• Reachability analysis (constructing the reachability

graph)
• Markovian analysis (reachability graph with transition

probabilities)
• Invariants: place invariants and transition invariants

(conservation of tokens and sequences without effect)
• Role of models: (1) insight, (2) analysis, and (3)

specification.

PN-62

Place invariant: Example

wait enter before make_picture after leave gone

free

occupied

wait+before+after+gone
free+occupied

PN-63

Transition invariant: Example

wait enter before make_picture after leave gone

free

occupied

accident

enter+make_picture+leave+accident

	Petri nets�Classical Petri nets: The basic model
	Process modeling
	Classical Petri net
	Elements
	Rules
	Enabled
	Firing
	Play “Token Game”
	Remarks
	Non-determinism
	Example: Single traffic light
	Two traffic lights
	Problem
	Solution
	Exercise: Train system (1)
	Exercise: Train system (2)
	Exercise: Train system (3)
	Exercise: Train system (4)
	Slide Number 19
	Multiple arcs connecting two nodes
	Example: Ball game
	Exercise: Manufacturing a chair
	Exercise: Burning alcohol.
	Exercise: Manufacturing a car
	Formal definition
	Formal definition (2)
	Exercise: Map onto (P,T,I,O) and s
	Exercise: Draw diagram
	Enabling formalized
	Firing formalized
	Mapping Petri nets onto transition systems
	Reachability graph
	Example
	Exercise: Give the reachability graph using both notations
	Different types of states
	Exercise: Producers and consumers
	Exercise: Two switches
	Modeling
	Role of a token
	Role of a place
	Role of a transition
	Typical network structures
	Causality
	Parallelism
	Parallelism: AND-split
	Parallelism: AND-join
	Choice: XOR-split
	Choice: XOR-join
	Iteration: 1 or more times
	Iteration: 0 or more times
	Capacity constraints: feedback loop
	Capacity constraints: mutual exclusion
	Capacity constraints: alternating
	We have seen most patterns, e.g.:
	Exercise: Manufacturing a car (2)
	Modeling problem (1): Zero testing
	Solution
	Modeling problem (2): Priority
	A bit of theory
	Exercise: Witness statements
	Exercise: Dining philosophers
	Preview: Analysis (Chapter 8)
	Place invariant: Example
	Transition invariant: Example

