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Motivation
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Design-time analysis vs run-time analysis

(software) 
system

(process)
model

event
logs

models
analyzes

discovery

records 
events, e.g., 
messages, 

transactions, 
etc.

specifies 
configures 
implements

analyzes

supports/
controls

extension

conformance

“world”

people services

organizations
components

business processes

verification

performance 
analysis

validation

design-time 
analysis

run-time 
analysis

e.g., systems like 
WebSphere, 
Oracle, TIBCO/
Staffware, SAP, 
FLOWer,  etc.

e.g., dedicated formats 
such as IBM’s 
Common Event 
Infrastructure (CEI) and 
MXML or proprietary 
formats stored in flat 
files or database 
tables.

e.g. process models 
represented in BPMN, 
BPEL, EPCs, Petri nets, 
UML AD, etc. or other 
types of models such as 
social networks, 
organizational networks, 
decision trees, etc.
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Analysis of processes

linear algebraic 
analysis techniques

Markov chain 
analysis techniques

state-space analysis 
techniques

Petri net

....

Y

X

Z
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Generic questions

terminating
it has only finite occurrence sequences
deadlock-free
each reachable marking enables a transition
live
each reachable marking enables an occurrence sequence 
containing all transitions
bounded
each place has an upper bound that holds for all 
reachable markings
1-safe
1 is a bound for each place s  
reversible
m0 is reachable from each reachable marking, i.e., the 
initial marking is a so-called home marking.
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Example

t1 t2

p1

p2

t3 t4

p5
p3

p4

terminating
it has only finite occurrence sequences
deadlock-free
each reachable marking enables a transition
live
each reachable marking enables an occurrence sequence containing all transitions
bounded
each place has an upper bound that holds for all reachable markings
1-safe
1 is a bound for each place s  
reversible
m0 is reachable from each reachable marking, i.e., the initial marking is a so-called home marking.
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Specific questions

t1 t2

p1

p2

t3 t4

p5
p3

p4

Is it possible to have a token in both p2 and p5?
Will t3 always take place?
Will t3 always take place assuming "fairness"?
Is it possible to execute t1 after t4?
Can both p4 and p5 be empty at the same time?
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infinite state space
state explosion problem
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Concepts

t1

p1

p2

(1,0)

t1

(1,2)

t1

(1,1)

t1

...

(1,0)
t1

(1,ω)

t1

marked net reachability 
graph

coverability 
graph
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Relevant material
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3. Wil van der Aalst: Process Mining: Discovery, Conformance 
and Enhancement of Business Processes, Springer Verlag 
2011 (chapters 1 & 5)

a) Chapter 1: DOI: 10.1007/978-3-642-19345-3_1 
http://www.springerlink.com/content/p443h219v3u3537l/fulltext.pdf

b) Chapter 5: DOI: 10.1007/978-3-642-19345-3_5 
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Today's focus is on 1 & 2.



Formalization

Note: refinement of earlier link between Petri 
net and transitions system (week 2/3) that is 
closer to standard literature.
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Basic Petri net

• P = {p1,p2}
• T = {t1,t2}
• F = {(p1,t1), (t1,p1), 

(t1,p2), (p1,t2), (p2,t2)}

t1

p1

p2

t2
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Place transition net

• P = {p1,p2}
• T = {t1,t2}
• F = {(p1,t1), (t1,p2), 

(p2,t2), (t2,p1)}
• W(p1,t1)=2, 

W(t1,p2)=2, 
W(p2,t2)=1, and 
W(t2,p1)=1

t1

p1

p2

t2
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Multi-sets

t1

p1

p2

t2

• M0(p1) = 2
• M0(p2) = 3
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Operations on multi-sets
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Notation

t1

p1

p2

t2

• M0 = 
[p1,p1,p2,p2,p2] = 
[p12,p23] = 
2[p1]+3[p2]

• also denoted as (2,3)
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Preset/postset
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Examples

t1

p1

p2

t2

• ●p1 = [t1]
• p1● = [t1,t2]
• ●p2 = [t1]
• p2● = [t2]
• ●t1 = [p1]
• t1● = [p1,p2]
• ●t2 = [p1,p2]
• t2● = [ ]

t1

p1

p2

t2

• ●p1 = [t2]
• p1● = [t12]
• ●p2 = [t12]
• p2● = [t2]
• ●t1 = [p12]
• t1● = [p22]
• ●t2 = [p2]
• t2● = [p1]
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Firing rule

t1

p1

p2

t2
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Notations

Desel/Reisig

Murata
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Notations: Firing rule

Desel/Reisig

Murata



Basic Properties
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Basic properties of a marked Petri net
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Terminating

t1

p1

p2

t2 t1

p1

p2

t2
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Deadlock-free

t1

p1

p2

t2 t1

p1

p2

t2
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Liveness

t1

p1

p2

t2 t1

p1

p2

t2
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Basic idea of liveness

markings 
where t is 
enabled

all 
reachable 
markings
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Boundedness

t1

p1

p2

t2

p1 is 1-bounded, 
p2 is 3-bounded

t1

p1

p2

t2

p1 is 1-bounded, 
p2 is unbounded
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Safeness

t1 t2

p1

p2

t3 t4

p5
p3

p4p6

t1 t2

p1

p2

t3 t4

p5
p3

p4p6
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Reversible/home marking.

t1

p1

p2

t2 t1

p1

p2

t2 t1

p1

p2

t2

[p2] is 
home 
marking



Reachability Graph
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Definition

M’ M’’
t
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Reachability graph algorithm

1) Label the initial marking M0 as the root and tag it "new".
2) While "new" markings exists, do the following:

a) Select a new marking M.
b) If no transitions are enabled at M, tag M "dead-end".
c) While there exist enabled transitions at M, do the following for 

each enabled transition t at M:
i. Obtain the marking M' that results from firing t at M.
ii. If M' does not appear in the graph, add M' and tag it "new".
iii. Draw an arc with label t from M to M' (if not already 

present).
3) Output the graph.



PAGE 34

Example

t1 t2

p1

p2

t3 t4

p5
p3

p4free

[p1,free,p4]
Step 1: Label the initial marking 
M0 as the root and tag it "new" 
(indicated by green color).
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Example (continued)

t1 t2

p1

p2

t3 t4

p5
p3

p4free

[p1,free,p4]
[p1,free,p4] [p2,free,p4]

t1

[p1,free,p5]

t4
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Example (continued)

t1 t2

p1

p2

t3 t4

p5
p3

p4free

[p1,free,p4] [p2,free,p4]

t1

[p1,free,p5]

t4

[p1,free,p4] [p2,free,p4]

t1

[p1,free,p5] [p2,free,p5]

t4 t4

[p1,p3,p4]

t4

t2
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Example (continued)

t1 t2

p1

p2

t3 t4

p5
p3

p4free

[p1,free,p4] [p2,free,p4]

t1

[p1,free,p5] [p2,free,p5]

t4 t4

[p1,p3,p4]

t4

t2
[p1,free,p4] [p2,free,p4]

t1

[p1,free,p5] [p2,free,p5]

t4 t4

[p1,p3,p4]

t4

t2

t1
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Example (continued)

t1 t2

p1

p2

t3 t4

p5
p3

p4free

[p1,free,p4] [p2,free,p4]

t1

[p1,free,p5] [p2,free,p5]

t4 t4

[p1,p3,p4]

t4

t2

t1

[p1,free,p4] [p2,free,p4]

t1

[p1,free,p5] [p2,free,p5]

t1

t4 t4

[p1,p3,p4]

[p1,p3,p5]

t2

t2
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Example (continued)

t1 t2

p1

p2

t3 t4

p5
p3

p4free

[p1,free,p4] [p2,free,p4]

t1

[p1,free,p5] [p2,free,p5]

t1

t4 t4

[p1,p3,p4]

[p1,p3,p5]

t2

t2

[p1,free,p4] [p2,free,p4]

t1

[p1,free,p5] [p2,free,p5]

t1

t4 t4

[p1,p3,p4] [p2,p3,p4]

t1

[p1,p3,p5]

t4

t2

t2
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Example (continued)

t1 t2

p1

p2

t3 t4

p5
p3

p4free

[p1,free,p4] [p2,free,p4]

t1

[p1,free,p5] [p2,free,p5]

t1

t4 t4

[p1,p3,p4] [p2,p3,p4]

t1

[p1,p3,p5]

t4

t2

t2

[p1,free,p4] [p2,free,p4]

t1

[p1,free,p5] [p2,free,p5]

t1

t4 t4

[p1,p3,p4] [p2,p3,p4]

t1

[p1,p3,p5] [p2,p3,p5]

t1

t4

t2

t2

t3
t3
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Example (continued)

t1 t2

p1

p2

t3 t4

p5
p3

p4free

[p1,free,p4] [p2,free,p4]

t1

[p1,free,p5] [p2,free,p5]

t1

t4 t4

[p1,p3,p4] [p2,p3,p4]

t1

[p1,p3,p5] [p2,p3,p5]

t1

t4

t2

t2

t3
t3

[p1,free,p4] [p2,free,p4]

t1

[p1,free,p5] [p2,free,p5]

t1

t4 t4

[p1,p3,p4] [p2,p3,p4]

t1

[p1,p3,p5] [p2,p3,p5]

t1

t4
t4

t2

t2

t3
t3



PAGE 42

Example (continued)

t1 t2

p1

p2

t3 t4

p5
p3

p4free

[p1,free,p4] [p2,free,p4]

t1

[p1,free,p5] [p2,free,p5]

t1

t4 t4

[p1,p3,p4] [p2,p3,p4]

t1

[p1,p3,p5] [p2,p3,p5]

t1

t4
t4

t2

t2

t3
t3

[p1,free,p4] [p2,free,p4]

t1

[p1,free,p5] [p2,free,p5]

t1

t4 t4

[p1,p3,p4] [p2,p3,p4]

t1

[p1,p3,p5] [p2,p3,p5]

t1

t4
t4

t2

t2

t3
t3
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Example (complete)

t1 t2

p1

p2

t3 t4

p5
p3

p4free

[p1,free,p4] [p2,free,p4]

t1

[p1,free,p5] [p2,free,p5]

t1

t4 t4

[p1,p3,p4] [p2,p3,p4]

t1

[p1,p3,p5] [p2,p3,p5]

t1

t4
t4

t2

t2

t3
t3

• The marked Petri net is:
deadlock free
 live
bounded
safe
 reversible
all markings are home markings



Coverability Graph
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Problem

t1

p1

p2

(1,0)

t1

(1,2)

t1

(1,1)

t1

...

ps. (n,m) is a shorthand for [p1n,p2m]
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Coverability tree algorithm

1) Label the initial marking M0 as the root and tag it "new".
2) While "new" markings exists, do the following:

a) Select a new marking M and remove the "new" tag.
b) If M is identical to a marking on the path from the root to M, then tag 

M "old" and go to another new marking.
c) If no transitions are enabled at M, tag M "dead-end".
d) While there exist enabled transitions at M, do the following for each 

enabled transition t at M:
i. Obtain the marking M' that results from firing t at M.
ii. If, on the path from the root to M, there exists a marking M'' such 

that M'(p) ≥ M''(p) for each p and M'≠M'' (i.e., M'' is coverable), 
then replace M'(p) by ω for each p such that M'(p) > M''(p).

iii. Introduce M' as a node, draw an arc with label t from M to M', and 
tag M' "new".

3) Output the tree.
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Example

t1

p1

p2

Step 1: Label the 
initial marking M0 as 
the root and tag it 
"new" (indicated by 
green color).

[p1]
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Example (continued)

t1

p1

p2

[p1] [p1] [p1,p2]

t1

[p1,p2ω]

Step 2: While "new" markings exists, do the following:
• Select a new marking M and remove the "new" tag.
• If M is identical to a marking on the path from the root to M, 

then tag M "old" and go to another new marking.
• If no transitions are enabled at M, tag M "dead-end".
• While there exist enabled transitions at M, do the 

following for each enabled transition t at M:
− Obtain the marking M' that results from firing t at M.
− If, on the path from the root to M, there exists a 

marking M'' such that M'(p) ≥ M''(p) for each p and 
M'≠M'' (i.e., M'' is coverable), then replace M'(p) by ω
for each p such that M'(p) > M''(p).

− Introduce M' as a node, draw an arc with label t from M
to M', and tag M' "new"

M'M
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Example (continued)

t1

p1

p2
[p1]

t1

[p1,p2ω]

Step 2: While "new" markings exists, do the following:
• Select a new marking M and remove the "new" tag.
• If M is identical to a marking on the path from the root to M, 

then tag M "old" and go to another new marking.
• If no transitions are enabled at M, tag M "dead-end".
• While there exist enabled transitions at M, do the 

following for each enabled transition t at M:
− Obtain the marking M' that results from firing t at M.
− If, on the path from the root to M, there exists a 

marking M'' such that M'(p) ≥ M''(p) for each p and 
M'≠M'' (i.e., M'' is coverable), then replace M'(p) by ω
for each p such that M'(p) > M''(p).

− Introduce M' as a node, draw an arc with label t from M
to M', and tag M' "new"

t1

[p1,p2ω]

t1

[p1,p2ω][p1]

ω+k = ω-k = ω
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Example (continued)

t1

p1

p2

Step 2: While "new" markings exists, do the following:
• Select a new marking M and remove the "new" tag.
• If M is identical to a marking on the path from the root to 

M, then tag M "old" and go to another new marking.
• If no transitions are enabled at M, tag M "dead-end".
• While there exist enabled transitions at M, do the following for 

each enabled transition t at M:
− Obtain the marking M' that results from firing t at M.
− If, on the path from the root to M, there exists a marking M''

such that M'(p) ≥ M''(p) for each p and M'≠M'' (i.e., M'' is 
coverable), then replace M'(p) by ω for each p such that 
M'(p) > M''(p).

− Introduce M' as a node, draw an arc with label t from M to 
M', and tag M' "new"

t1

[p1,p2ω]

t1

[p1,p2ω][p1]

t1

[p1,p2ω]

t1

[p1,p2ω][p1]
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Example (complete)

t1

p1

p2

t1

[p1,p2ω]

t1

[p1,p2ω][p1]

Step 3: Output the tree.

t1

[p1,p2ω][p1]
t1

Coverability graph:
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Another example

t1

p1

p2

t2

p3

p4

[p1,p3]

[p1,p3]

t1

[p1,p2ω,p3]

[p1,p3,p4ω]

t2

Step 1: Label the initial marking 
M0 as the root and tag it "new" 
(indicated by green color).

Step 2 ...
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Example (continued)

t1

p1

p2

t2

p3

p4

[p1,p3]

t1

[p1,p2ω,p3]

[p1,p3,p4ω]

t2

[p1,p3]

t1

[p1,p3,p4ω]

t2

t1

[p1,p3,p4ω]

t2

[p1,p2ω,p3]

t1

[p1,p2ω,p3]

[p1,p2ω,p3,p4ω]

t2

[p1,p2ω,p3,p4ω]

[p1,p3]

t1

[p1,p2ω,p3]

[p1,p3,p4ω]

t2

t1

[p1,p2ω,p3]

[p1,p2ω,p3,p4ω]

t2
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Example (continued)

t1

p1

p2

t2

p3

p4

[p1,p3]

t1

[p1,p3,p4ω]

t2

t1

[p1,p3,p4ω]

t2

[p1,p2ω,p3]

t1

[p1,p2ω,p3]

[p1,p2ω,p3,p4ω]

t2

[p1,p2ω,p3,p4ω]

[p1,p3]

t1

[p1,p3,p4ω]

t2

t1

[p1,p3,p4ω]

t2

[p1,p2ω,p3]

t1

[p1,p2ω,p3]

[p1,p2ω,p3,p4ω]

t2

[p1,p2ω,p3,p4ω]

[p1,p3]

t1

[p1,p3,p4ω]

t2

t1

[p1,p3,p4ω]

t2

[p1,p2ω,p3]

t1

[p1,p2ω,p3]

[p1,p2ω,p3,p4ω]

t2

[p1,p2ω,p3,p4ω]
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Example (continued)

t1

p1

p2

t2

p3

p4

[p1,p3]

t1

[p1,p3,p4ω]

t2

t1

[p1,p3,p4ω]

t2

[p1,p2ω,p3]

t1

[p1,p2ω,p3]

[p1,p2ω,p3,p4ω]

t2

[p1,p2ω,p3,p4ω]

[p1,p3]

t1

t2

t1

[p1,p3,p4ω]

t2

[p1,p2ω,p3]

t1

[p1,p2ω,p3]

[p1,p2ω,p3,p4ω]

t2

[p1,p2ω,p3,p4ω]

[p1,p2ω,p3,p4ω]

[p1,p2ω,p3,p4ω]

t1

t2
[p1,p3,p4ω]

[p1,p3]

t1

t2

t1

[p1,p3,p4ω]

t2

[p1,p2ω,p3]

t1

[p1,p2ω,p3]

[p1,p2ω,p3,p4ω]

t2

[p1,p2ω,p3,p4ω]

[p1,p2ω,p3,p4ω]

[p1,p2ω,p3,p4ω]

t1

t2

[p1,p2ω,p3,p4ω]

[p1,p2ω,p3,p4ω]

t1

t2

[p1,p3,p4ω]
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Example (continued)

t1

p1

p2

t2

p3

p4

[p1,p3]

t1

t2

t1

[p1,p3,p4ω]

t2

[p1,p2ω,p3]

t1

[p1,p2ω,p3]

[p1,p2ω,p3,p4ω]

t2

[p1,p2ω,p3,p4ω]

[p1,p2ω,p3,p4ω]

[p1,p2ω,p3,p4ω]

t1

t2

[p1,p2ω,p3,p4ω]

[p1,p2ω,p3,p4ω]

t1

t2

[p1,p3,p4ω]

4x

[p1,p3]

t1

t2

t1

[p1,p3,p4ω]

t2

[p1,p2ω,p3]

t1

[p1,p2ω,p3]

[p1,p2ω,p3,p4ω]

t2

[p1,p2ω,p3,p4ω]

[p1,p2ω,p3,p4ω]

[p1,p2ω,p3,p4ω]

t1

t2

[p1,p2ω,p3,p4ω]

[p1,p2ω,p3,p4ω]

t1

t2

[p1,p3,p4ω]

Step 3: Output the tree.
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Example (complete)

t1

p1

p2

t2

p3

p4

[p1,p3]

t1

t2

t1

[p1,p3,p4ω]

t2

[p1,p2ω,p3]

t1

[p1,p2ω,p3]

[p1,p2ω,p3,p4ω]

t2

[p1,p2ω,p3,p4ω]

[p1,p2ω,p3,p4ω]

[p1,p2ω,p3,p4ω]

t1

t2

[p1,p2ω,p3,p4ω]

[p1,p2ω,p3,p4ω]

t1

t2

[p1,p3,p4ω]

Coverability graph

t1

t2

t2

[p1,p2ω,p3]

[p1,p2ω,p3,p4ω]

t1

t1

t2

t2

t1[p1,p3,p4ω]

[p1,p3]
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Coverability graph

• Take the coverability tree and simply merge nodes 
with identical labels

t1

[p1,p2ω]

t1

[p1,p2ω][p1]

t1

[p1,p2ω][p1]
t1

[p1,p3]

t1

t2

t1

[p1,p3,p4ω]

t2

[p1,p2ω,p3]

t1

[p1,p2ω,p3]

[p1,p2ω,p3,p4ω]

t2

[p1,p2ω,p3,p4ω]

[p1,p2ω,p3,p4ω]

[p1,p2ω,p3,p4ω]

t1

t2

[p1,p2ω,p3,p4ω]

[p1,p2ω,p3,p4ω]

t1

t2

[p1,p3,p4ω] t1

t2

t2

[p1,p2ω,p3]

[p1,p2ω,p3,p4ω]

t1

t1

t2

t2

t1[p1,p3,p4ω]

[p1,p3]
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Another example

t1

p1

p2

(1,0)

t1

(1,2)

t1

(1,1)

(1,0)

t1

(1,ω)

t1

(1,ω)

t1

...

t2

(0,0)

(0,1)

t2

t2

(0,ω)
t2

(1,0)
t1

(1,ω) (0,ω)
t2

t1

marked net reachability 
graph

coverability 
tree

coverability 
graph

ps. (n,m) is a shorthand for [p1n,p2m]
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ω-markings

t1

t2

t2

[p1,p2ω,p3]

[p1,p2ω,p3,p4ω]

t1

t1

t2

t2

t1[p1,p3,p4ω]

[p1,p3]
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Properties

• The coverability tree/graph is always 
finite.

• The marked Petri net is bounded if and 
only if the corresponding coverability 
tree/graph contains only ω-free 
markings.

• The coverability tree/graph gives an 
over-approximation.

• Different Petri nets may have the same 
coverability tree/graph.
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Basic relation between reachable markings 
and coverability tree/graph

t1

p1

p2

t2

(1,0)

t1

(1,ω)

t1

(1,ω) (0,ω)
t2

Let n=180. There is a 
reachable marking 
with 0 tokens in p1 
and at least 180 
tokens in p2.
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Example (readers and writers)

t1 t2

p1

p2

t3 t4

p5
p3

p4

construct coverability graph ...



Initial part
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t1 t2

p1

p2

t3 t4

p5
p3

p4

[p1,p5][p2,p4]

[p1,p4]
t1 t4

[p1,p3ω,p4]
t1 t4

t2

[p2,p5]

t4

t2

[p2,p5]t1 t2 [p1,p3ω,p5]

[p2,p3ω,p5]
t2 t3

t1 t3
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Coverability tree

t1 t2

p1

p2

t3 t4

p5
p3

p4

[p1,p5][p2,p4]

[p1,p4]
t1 t4

[p1,p3ω,p4]
t1 t4

[p2,p3ω,p4] [p1,p3ω,p5]

t2

t2
[p1,p3ω,p4] t4

[p2,p3ω,p5]
t2 t3

[p1,p3ω,p5] [p2,p3ω,p4]
t1

t3
[p2,p3ω,p5] [p1,p3ω,p4]

t1 t3

[p2,p3ω,p5] [p1,p3ω,p4]

t2
t3

[p1,p3ω,p5] [p2,p3ω,p4]
t2 t4

[p1,p3ω,p4] [p2,p3ω,p5]

[p2,p5]

t4

t2

[p1,p3,p5]

[p2,p3ω,p5] [p1,p4]

t2

[p1,p3ω,p5] [p2,p3ω,p4]
t3

[p2,p3ω,p5] [p1,p3ω,p4]
t1 t3

t1
[p2,p3ω,p4] [p1,p3ω,p5]

t4

t2 t4

[p1,p3ω,p4] [p2,p3ω,p5]

t2 t4

[p1,p3ω,p4] [p2,p3ω,p5]

t1 t4
[p2,p3ω,p4] [p1,p3ω,p5]

t1 t3

[p2,p3ω,p5] [p1,p3ω,p4]

[p2,p5]t1 t2 [p1,p3ω,p5]

[p2,p3ω,p5]
t2 t3

[p1,p3ω,p5]

[p1,p3ω,p4]

t1

t4

[p1,p3ω,p5]

t1 t3

[p2,p3ω,p4]
t2 t4

[p1,p3ω,p4] [p2,p3ω,p5]

t1 t4
[p2,p3ω,p4] [p1,p3ω,p5]

[p2,p3ω,p4]
t2 t4

[p1,p3ω,p4] [p2,p3ω,p5]
t2 t3

[p1,p3ω,p5] [p2,p3ω,p4]
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Coverability graph

t1 t2

p1

p2

t3 t4

p5
p3

p4

t1 t4

t4 t1

t1 t4

t4 t1

t2

t2

t2

t2

t3

t3

t1

t2

t3[p1,p5][p2,p4]

[p1,p4]

[p2,p5]

[p1,p3,p5]

[p1,p3ω,p4]

[p2,p3ω,p4] [p1,p3ω,p5]

[p2,p3ω,p5]
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[p1,p5][p2,p4]

[p1,p4]
t1 t4

[p1,p3ω,p4]
t1 t4

[p2,p3ω,p4] [p1,p3ω,p5]

t2

t2
[p1,p3ω,p4] t4

[p2,p3ω,p5]
t2 t3

[p1,p3ω,p5] [p2,p3ω,p4]
t1

t3
[p2,p3ω,p5] [p1,p3ω,p4]

t1 t3

[p2,p3ω,p5] [p1,p3ω,p4]

t2
t3

[p1,p3ω,p5] [p2,p3ω,p4]
t2 t4

[p1,p3ω,p4] [p2,p3ω,p5]

[p2,p5]

t4

t2

[p1,p3,p5]

[p2,p3ω,p5] [p1,p4]

t2

[p1,p3ω,p5] [p2,p3ω,p4]
t3

[p2,p3ω,p5] [p1,p3ω,p4]
t1 t3

t1
[p2,p3ω,p4] [p1,p3ω,p5]

t4

t2 t4

[p1,p3ω,p4] [p2,p3ω,p5]

t2 t4

[p1,p3ω,p4] [p2,p3ω,p5]

t1 t4
[p2,p3ω,p4] [p1,p3ω,p5]

t1 t3

[p2,p3ω,p5] [p1,p3ω,p4]

[p2,p5]t1 t2 [p1,p3ω,p5]

[p2,p3ω,p5]
t2 t3

[p1,p3ω,p5]

[p1,p3ω,p4]

t1

t4

[p1,p3ω,p5]

t1 t3

[p2,p3ω,p4]
t2 t4

[p1,p3ω,p4] [p2,p3ω,p5]

t1 t4
[p2,p3ω,p4] [p1,p3ω,p5]

[p2,p3ω,p4]
t2 t4

[p1,p3ω,p4] [p2,p3ω,p5]
t2 t3

[p1,p3ω,p5] [p2,p3ω,p4]

t1 t4

t4 t1

t1 t4

t4 t1

t2

t2

t2

t2

t3

t3

t1

t2

t3[p1,p5][p2,p4]

[p1,p4]

[p2,p5]

[p1,p3,p5]

[p1,p3ω,p4]

[p2,p3ω,p4] [p1,p3ω,p5]

[p2,p3ω,p5]

t1 t2

p1

p2

t3 t4

p5
p3

p4
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Coverability graph (vector notation)

(1,0,0,1,0)

(0,1,0,1,0) (1,0,0,0,1)

t1

(0,1,0,0,1)

t4

t4 t1

(1,0,ω,1,0)

(0,1,ω,1,0) (1,0,ω,0,1)

t1

(0,1,ω,0,1)

t4

t4 t1

(1,0,1,0,1)t2

t2

t2

t2

t3

t3

t1

t2

t3

t1 t2

p1

p2

t3 t4

p5
p3

p4
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Analysis results

• p1, p2, p4, p5 are safe
• p3 is unbounded
• [p2,p5] is reachable
• [p1,p2] is not reachable
• [p1,p3180,p5] is coverable

t1 t2

p1

p2

t3 t4

p5
p3

p4

t1 t4

t4 t1

t1 t4

t4 t1

t2

t2

t2

t2

t3

t3

t1

t2

t3[p1,p5][p2,p4]

[p1,p4]

[p2,p5]

[p1,p3,p5]

[p1,p3ω,p4]

[p2,p3ω,p4] [p1,p3ω,p5]

[p2,p3ω,p5]
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Additional properties

• A transition t is dead if and only if if does not appear 
in the coverability graph.

• The coverability graph and reachability graph are 
identical if the marked Petri net is bounded (i.e., only 
ω-free markings).

• The marked Petri net is safe if only 0's and 1's 
appear in nodes.

• Any firing sequence of the marked Petri net can be 
matched by a "walk" through the coverability graph.

• The reverse is not true!!!!
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Limitation: Loss of information

t1

p1

p2 t1

[p1,p2ω][p1]
t1

t1

p1

p2

Two nets with the same coverability graph!

{[p1],[p1,p23], 
[p1,p26], [p1,p29], 
[p1,p212], ...}

{[p1],[p1,p21], 
[p1,p22], [p1,p23], 
[p1,p24], ...}
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State-explosion problem (1)

2n+1 states

http://images.google.nl/imgres?imgurl=http://www.radgraphics.net/images/main/atomic%2520explosion%2520-%25204.jpg&imgrefurl=http://www.dewereldvankaat.be/archives/2006_12_01_archief.html&h=864&w=1081&sz=123&hl=nl&start=1&um=1&tbnid=f8w5zJ_ZH7XHbM:&tbnh=120&tbnw=150&prev=/images%3Fq%3Dexplosion%26svnum%3D10%26um%3D1%26hl%3Dnl%26rls%3DGGLJ,GGLJ:2006-48,GGLJ:nl%26sa%3DN�
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State-explosion problem (2)

place s is
2n bounded

Each round the number of tokens in s can be doubled.

http://images.google.nl/imgres?imgurl=http://www.radgraphics.net/images/main/atomic%2520explosion%2520-%25204.jpg&imgrefurl=http://www.dewereldvankaat.be/archives/2006_12_01_archief.html&h=864&w=1081&sz=123&hl=nl&start=1&um=1&tbnid=f8w5zJ_ZH7XHbM:&tbnh=120&tbnw=150&prev=/images%3Fq%3Dexplosion%26svnum%3D10%26um%3D1%26hl%3Dnl%26rls%3DGGLJ,GGLJ:2006-48,GGLJ:nl%26sa%3DN�
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Variants

• Construct the coverability graph on the fly 
(i.e., do not first construct the coverability 
tree): the graph may become smaller but 
process is typically non-deterministic.

• Several approaches have been proposed to 
construct "minimal" coverability graphs/sets
(see "Alain Finkel: The Minimal Coverability Graph 
for Petri Nets. Applications and Theory of Petri Nets 
1991: 210-243", and "Gilles Geeraerts, Jean-François 
Raskin, Laurent Van Begin: On the Efficient 
Computation of the Minimal Coverability Set for Petri 
Nets. ATVA 2007: 98-113")



Conclusion
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The coverability graph is finite but ...

• some information gets lost in case of unbounded 
behavior, and 

• it may be huge and impossible to construct.

Next: structural methods like 
invariants, siphons, traps, etc.

http://images.google.nl/imgres?imgurl=http://www.radgraphics.net/images/main/atomic%2520explosion%2520-%25204.jpg&imgrefurl=http://www.dewereldvankaat.be/archives/2006_12_01_archief.html&h=864&w=1081&sz=123&hl=nl&start=1&um=1&tbnid=f8w5zJ_ZH7XHbM:&tbnh=120&tbnw=150&prev=/images%3Fq%3Dexplosion%26svnum%3D10%26um%3D1%26hl%3Dnl%26rls%3DGGLJ,GGLJ:2006-48,GGLJ:nl%26sa%3DN�
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After this lecture you should be able to:

• Understand the formalizations, i.e., (P,T,F,W), M, (N,M)[t>(N,M'), etc.
• Determine whether a concrete marked net is terminating, deadlock-

free, live, bounded, safe, and/or reversible, whether a transition is 
live and/or dead, whether a place is k-bounded, etc.

• Construct a Petri net that has a set of desirable properties, e.g., a 
net that is live and bounded but not reversible.

• Construct the reachability graph of a marked net.
• Construct the coverability tree of a marked net.
• Construct the coverability graph of a marked net.
• Tell which properties can(not) be derived from the coverability 

tree/graph.
• Understand the limitations of  the coverability tree/graph (loss of 

information, inability to decide liveness, etc.).
• Derive conclusions from a concrete coverability tree/graph.



Appendix: Formalization 
of Coverability Graph 
based on Desel & Reisig
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Coverability tree & graph

• Idea: cut-off unbounded behavior using omega (ω) markings 

(1,0, ω,1, ω ,1,2,0)
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Trivial example

t1

p1

p2

(1,0)

t1

(1,2)

t1

(1,1)

(1,0)

t1

(1,ω)

t1

(1,ω)

t1

...

(1,0)
t1

(1,ω)

t1

marked net reachability 
graph

coverability 
tree

coverability 
graph
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Extended example

t1

p1

p2

(1,0)

t1

(1,2)

t1

(1,1)

(1,0)

t1

(1,ω)

t1

(1,ω)

t1

...

t2

(0,0)

(0,1)

t2

t2

(0,ω)
t2

(1,0)
t1

(1,ω) (0,ω)
t2

t1

marked net reachability 
graph

coverability 
tree

coverability 
graph
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Approach

1. Define omega (ω) occurrence sequences.
2. Show that these are finite.
3. Construct coverability tree
4. Construct coverability graph

t1

p1

p2

(1,0)

t1

(1,ω)

t1

(1,ω)
t2

(0,ω)
t2

(1,0)
t1

(1,ω) (0,ω)
t2

t1

marked net
ω-occurrence 

sequences
coverability 

tree
coverability 

graph

(1,0)
t1

(1,ω)

(1,0)

t1

(1,ω)

t1

(1,ω)

(1,0)

t2

(0,ω)

t1

(1,ω)
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Example of a ω-occurrence sequence

• ω-occurrence sequence: t1 t1
• (1,0) -t1-> (1,ω) -t1-> (1, ω)

t1

p1

p2

t2

marked net

(1,0)

t1

(1,ω)

t1

(1,ω)
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(1) Transitions need to be enabled

t1

p1

p2

t2

marked net
ω-occurrence 

sequences

(1,0)
t1

(1,ω)

(1,0)

t1

(1,ω)

t1

(1,ω)

(1,0)

t2

(0,ω)

t1

(1,ω) Only t1 is 
enabled in 
(1,0), not t2.
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(2) For non-ω place markings: business as 
usual

t1

p1

p2

t2

marked net
ω-occurrence 

sequences

(1,0)

t1

(0,1)
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(3) Introducing omegas

t1

p1

p2

t2

marked net
ω-occurrence 

sequences

(1,0)
t1

(1,ω)

(1,0)

t1

(1,ω)

t1

(1,ω)

(1,0)

t2

(0,ω)

t1

(1,ω)

(1,ω) is 
"reachable" 
from (1,0) 
because 
there is a j 
(j=0) such 
that ...
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(4) Stop after second identical marking

t1

p1

p2

t2

marked net
ω-occurrence 

sequences

(1,0)
t1

(1,ω)

(1,0)

t1

(1,ω)

t1

(1,ω)

(1,0)

t2

(0,ω)

t1

(1,ω)

(1,0)

t1

(1,ω)

t1

(1,ω)

t2

(0,ω)

Marking 
(0,ω) is dead 
while (1,ω) 
markings are 
not 
continued 
after second 
occurrence.
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Finite? 

• How long can a ω-occurrence sequence be?
• How many ω-occurrence sequences are there?
• Is the coverability tree/graph finite?

http://images.google.nl/imgres?imgurl=http://www.math.cornell.edu/~mec/2003-2004/geometry/finite/finite.jpg&imgrefurl=http://www.math.cornell.edu/~mec/2003-2004/geometry/geometry.html&h=480&w=640&sz=30&hl=nl&start=2&um=1&tbnid=Ls53ir_uqOZPTM:&tbnh=103&tbnw=137&prev=/images%3Fq%3Dfinite%26ndsp%3D21%26svnum%3D10%26um%3D1%26hl%3Dnl%26rls%3DGGLJ,GGLJ:2006-48,GGLJ:nl%26sa%3DN�
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Dickson's Lemma (1874-1954)

1
0
0
0

1
1
0
0

0
1
1
0

0
0
1
1

0
0
1
1

1
0
0
1

1
1
0
1

0
1
1
1

0
0
1
2

0
0
1
2

1
0
0
2

1
1
0
2

0
1
1
2

0
0
1
3

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10 φ11 φ12 φ13 φ14

1
0
0
0

1
1
0
0

0
1
1
0

0
0
1
1

0
0
1
1

1
0
0
1

1
1
0
1

0
1
1
1

0
0
1
2

0
0
1
2

1
0
0
2

1
1
0
2

0
1
1
2

0
0
1
3

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10 φ11 φ12 φ13 φ14
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Coverability tree
(1,0)

t1

(1,ω)

t1

(1,ω) (0,ω)
t2

ω-occurrence 
sequences

coverability 
tree

(1,0)
t1

(1,ω)

(1,0)

t1

(1,ω)

t1

(1,ω)

(1,0)

t2

(0,ω)

t1

(1,ω)

Diagrams are a bit misleading: vertices 
labeled with a ω-marking are really 
sequences, e.g., initial node is ε rather 
than (1,0).
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Finiteness
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Example
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Marking graph 
(i.e., reachability graph)
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Coverability tree

find the error (also in paper)...
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Relation ω-markings and normal 
markings

t1

p1

p2

t2

(1,0)

t1

(1,ω)

t1

(1,ω) (0,ω)
t2

Let b=180. There is a 
marking reachable 
with 0 tokens in p1 
and at least 180 
tokens in p2.
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Boundedness = "all ω-markings are ω-
free"
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b-boundedness

t1

p1

p2

t2

(1,0)

t1

(1,ω)

t1

(1,ω) (0,ω)
t2

p1 is 1-boundned (safe)
p2 is unbounded
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Dead transitions do not appear in cov. 
tree
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Coverability graph (versus cov. tree)

(1,0)

t1

(1,ω)

t1

(1,ω) (0,ω)
t2

(1,0)
t1

(1,ω) (0,ω)
t2

t1

coverability 
tree

coverability 
graph
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Boundedness implies equivalence



Appendix: Examples 
taken from Murata
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Coverability 
tree

(same as before)
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Example
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Properties
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Coverability graph
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