
Dining Philosophers

Abstract
This is a small toy example which is well-suited as an introduction to

occurrence graphs. The analysis of the occurrence graph is described in great

detail and a large number of different queries are illustrated.

The CPN model describes how a number of processes (philosophers) share

common resources (chopsticks). The Dining Philosophers is one of the

traditional examples used by computer scientists to illustrate new concepts in

the area of synchronisation and concurrency.

The example is taken from Sect. 1.6 of Vol. 2 of the CPN book. Most of the

detailed explanation is taken from the Occurrence Graph Manual, which uses

the Dining Philosophers as its main example.

Developed and Maintained by:
Kurt Jensen, Aarhus University, Denmark (kjensen@daimi.au.dk).
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CPN Model

Five Chinese philosophers are sitting around a circular table. In the middle of

the table there is a delicious dish of rice, and between each pair of philosophers

there is a single chopstick. Each philosopher alternates between thinking and

eating. To eat, the philosopher needs two chopsticks, and he is only allowed to

use the two which are situated next to him (on his left and right side). The

sharing of chopsticks prevents two neighbours from eating at the same time.

Rice

Dish

ph1

ph5

ph4 ph3

ph2

cs1 cs2

cs4

cs3cs5

The philosopher system is modelled by the CP-net shown below. The PH

colour set represents the philosophers, while the CS colour set represents the

chopsticks. The function Chopsticks maps each philosopher into the two

chopsticks next to him.

Eat

PH

    Take 
Chopstick

Think

PH

PH.all()

p

p

Chopsticks(p)

Chopsticks(p)

p

p

Put Down
Chopstick

   Unused
Chopsticks

CS

CS.all()

val n = 5;

color PH = index ph with 1..n;

color CS = index cs with 1..n;

var p: PH;

fun Chopsticks(ph(i)) =

1`cs(i)++1`cs(if i=n then 1 else i+1);
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An occurrence graph for the dining philosophers is shown below. The current

version of CPN Tools does not include facilities for drawing O-graphs. Each

node represents a reachable marking, while each arc represents the occurrence

of a binding element – leading from the marking of the source node to the

marking of the destination node. To improve readability, we have only shown

the contents of some of the markings and some of the binding elements. It

should be noted that all arcs are double arcs (i.e., represents two individual

arcs).

1

5:5

2

3:3

3

3:3

4

3:3

5

3:3

6

3:3

7

2:2

8

2:2

9

2:2

Unused: 1`cs(1) 

Think: 1`ph(1)+ 1`ph(3)+ 1`ph(5) 

Eat: 1`ph(2)+ 1`ph(4) 

10

2:2

Unused: 1`cs(3) 

Think: 1`ph(2)+ 1`ph(3)+ 1`ph(5) 

Eat: 1`ph(1)+ 1`ph(4) 

11

2:2

Unused: 1`cs(5) 

Think: 1`ph(2)+ 1`ph(4)+ 1`ph(5) 

Eat: 1`ph(1)+ 1`ph(3) 

Put: {p=ph(2)}

Take: {p=ph(4)}Take: {p=ph(1)}

Put: {p=ph(3)}

The standard report looks as shown below. To improve the readability of the

multi-set bounds we have substituted PH for 1`ph(1)+ 1`ph(2)+ 1`ph(3)+

1`ph(4) + 1`ph(5) and CS for 1`cs(1)+ 1`cs(2) + 1`cs(3) + 1`cs(4) + 1`cs(5).
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Statistics

---------------------------------

Occurrence Graph

Nodes: 11

Arcs: 30

Secs: 1

Status: Full

Scc Graph

Nodes: 1

Arcs: 0

Secs: 0

Boundedness Properties

---------------------------------

Best Integer Bounds

Upper Lower

Eat 2 0

Think 5 3

Unused 5 1

Best Upper Multi-set Bounds

Eat PH

Think PH

Unused CS

Best Lower Multi-set Bounds

Eat empty

Think empty

Unused empty

Home Properties

---------------------------------

Home Markings: All

Liveness Properties

---------------------------------

Dead Markings: None

Dead Transitions Instances: None

Live Transitions Instances: All
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Fairness Properties

---------------------------------

Put Impartial

Take Impartial

Below we show a large number of standard queries. They are all taken from the

Occurrence Graph Manual:

Reachable determines whether there exists an occurrence sequence from the

marking of the first node to the marking of the second.

Reachable (5,3)

returns true. This tells us that there exists an occurrence sequence from the

marking M5 (of node 5) to the marking M3 (of node 3). The function also has a

chatty version:

Reachable' (5,3)

which returns the same result together with the explanation:

"A path from node 5 to node 3 is: [5, 9, 3]"

This tells us that there exists an occurrence sequence containing the markings

M5, M9 and M3 (in that order). The path is of minimal length.

SccReachable returns the same result as Reachable, but it uses the

Scc-graph, i.e., the strongly connected components. This means that it is faster

than Reachable (at least for occurrence graphs which contain cycles). The

function also has a chatty version:

SccReachable' (5,3)

which returns the same result together with the explanation:

"A path from the SCC of node 5 to the

SCC of node 3 is: [~1]"

This tells us that both M5 and M3 belong to the strongly connected component

~1 (i.e. the strongly connected component of the initial marking).

AllReachable determines whether all the reachable markings are reachable

from each other. This is the case iff there is exactly one strongly connected

component.

AllReachable ()

returns true.
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UpperInteger uses a specified function F of type:

Node -> 'a ms

to calculate an integer |F(n)|. This is done for each node n in the occurrence

graph, and the maximum of the calculated integers is returned. The query:

UpperInteger (Mark.System'Eat 1)

calculates the maximal number of tokens on place Eat on the first instance of

page System. The result is 2, and this tells us that at most two philosophers can

eat at the same time.

LowerInteger is analogous to UpperInteger, but returns the minimal

value of the integers |F(n)|.

LowerInteger (Mark.System'Think 1)

calculates the minimal number of tokens on place Think on the first instance of

page System. The result is 3, and this tells us that there always are at least three

thinking philosophers.

UpperMultiSet is analogous to UpperInteger, but it calculates F(n)

instead of &F(n)&. The result is the smallest multi-set which is larger than or

equal to all the calculated multi-sets.

UpperMultiSet (Mark.System'Eat 1)

returns:

[ph 1, ph 2, ph 3, ph 4, ph 5]: PH ms

which is the ML representation of the multi-set:

1`ph(1)+1`ph(2)+1`ph(3)+1`ph(4)+1`ph(5)

This tells us that each of the five philosophers is able to eat. To obtain the

second, more readable format of the result, evaluate the following ML code:

mkst_ms'PH (UpperMultiSet (Mark.System'Eat 1))

LowerMultiSet is analogous to UpperInteger, but returns the largest

multi-set which is smaller than or equal to all the calculated multi-sets.

LowerMultiSet (Mark.System'Eat 1)

returns the empty multi-set, represented as an empty list. This tells us that each

of the five philosophers is able to think (because there is a marking in which

the philosopher is not eating).
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HomeSpace determines whether the set of markings (specified in the list of

nodes) is a home space, i.e., whether, from each reachable marking, it is

possible to reach at least one of the markings.

HomeSpace [2,6]

returns true. The function also has a chatty version.

MinimalHomeSpace returns the minimal number of markings which is

needed to form a home space. This is identical to the number of terminal

strongly connected components.

MinimalHomeSpace ()

returns 1.

HomeMarking determines whether the marking of the specified node is a

home marking, i.e., whether it can be reached from all reachable markings. This

is the case iff there is exactly one terminal strongly connected component and

the specified marking belongs to that component.

HomeMarking (6)

returns true. The function also has a chatty version.

ListHomeMarkings returns a list with all those nodes that are home

markings.

ListHomeMarkings ()

returns a list which contains all 11 nodes of the occurrence graph.

ListHomeScc is similar to ListHomeMarkings, but the result is given in

a more compact way. The result is either a single Scc (and then the home

markings are exactly those markings that belong to the Scc) or the result is zero

(and then there are no home markings). For the dining philosophers:

ListHomeScc ()

returns ~1 (i.e. the Scc to which the initial marking belongs). This tells us that

all reachable markings are home markings.

HomeMarkingExists determines whether the CP-net has any home

markings. This is the case iff there is exactly one terminal strongly connected

component.

HomeMarkingExists ()

returns true.
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Initial HomeMarking determines whether the initial marking of the

occurrence graph is a home marking, i.e., whether it can be reached from all

reachable markings. This is the case iff there is exactly one strongly connected

component. The result of this function is identical to the result of

AllReachable.

InitialHomeMarking ()

returns true.

DeadMarking determines whether the marking of the specified node is dead,

i.e., has no enabled binding elements.

DeadMarking (8)

returns false. This tells us that M8 has some enabled binding elements.

ListDeadMarkings returns a list with all those nodes that are dead, i.e.,

have no enabled binding elements.

ListDeadMarkings ()

returns the empty list.

SccListDeadMarkings returns the same result as ListDeadMarkings,

but it uses the Scc-graph, i.e., the strongly connected components. This means

that it is faster than ListDeadMarkings (at least for occurrence graphs

which contain cycles).

TIsDead determines whether the set of transition instances (specified in the

list) is dead in the marking of the specified node, i.e., whether it is impossible

to find an occurrence sequence which starts in the marking and contains one of

the transition instances.

TIsDead ([TI.System'Take 1],4)

returns false. This tells us that there exists an occurrence sequence which starts

in M4 and contains an occurrence of transition Take on the first instance of the

page System. The function also has a chatty version:

TIsDead’ ([TI.System'Take 1],4)

which returns the same result together with the explanation:

"A transition instance from the given list
is contained in the SCC: ~1 (which is
reachable from the SCC of the given node)"
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BEsDead is analogous to TIsDead except that the argument is a list of

binding elements (instead of transition instances).

BEsDead ([Bind.System'Take (1,{p=ph(3)})],4)

returns false. This tells us that there exists an occurrence sequence which starts

in M4 and contains an occurrence of transition Take on the first instance of

page System, with the variable p bound to ph(3). The function also has a chatty

version.

ListDeadTIs returns a list with all those transition instances that are dead,

i.e., do not appear in any occurrence sequence starting from the initial marking

of the occurrence graph.

ListDeadTIs ()

returns the empty list.

TIsLive determines whether the set of transition instances (specified in the

list) is live, i.e., whether, from each reachable marking, it is possible to find an

occurrence sequence which contains one of the transition instances.

TIsLive [TI.System'Take 1]

returns true. This tells us that it is impossible to reach a marking such that

transition Take on the first instance of page System never can occur. The

function also has a chatty version.

BEsLive is analogous to TIsLive except that the argument is a list of

binding elements (instead of transition instances).

BEsLive [Bind.System'Take (1,{p=ph(3)})]

returns true. This tells us that philosopher ph(3) always has a chance to Take

his chopsticks. He cannot do that in all the reachable markings – but it is

always possible to choose a sequence of steps so that this may happen. The

function also has a chatty version.
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BEsStrictlyLive determines whether the set of binding elements

(specified in the list) is strictly live, i.e., whether each individual element in the

list is live.

BEsStrictlyLive [

Bind.System'Take (1,{p=ph(1)}),

Bind.System'Take (1,{p=ph(2)}),

Bind.System'Take (1,{p=ph(3)}),

Bind.System'Take (1,{p=ph(4)}),

Bind.System'Take (1,{p=ph(5)})]

returns true. This tells us that each philosopher always has a chance to Take his

chopsticks. He cannot do that in all the reachable markings – but it is always

possible to choose a sequence of steps so that this may happen.

ListLiveTIs returns a list with all those transition instances that are live.

ListLiveTIs ()

returns:

[System'Put 1,System'Take 1]

This tells us that it is impossible to reach a marking such that one of the

transition instances never can occur.

TIsFairness determines whether the set of transition instances (specified in

the list) is impartial, fair or just.

TIsFairness [TI.System'Take 1]

returns Impartial. This tells us that we cannot have an infinite occurrence

sequence unless transition Take on the first instance of page System continues

to occur.

BEsFairness is analogous to TIsFairness except that the argument is a

list of binding elements (instead of transition instances).

BEsFairness[Bind.System'Take (1,{p=ph(3)})]

returns No_Fairness. This tells us that it is possible to have an infinite

occurrence sequence (starting from a reachable marking) in which philosopher

three never takes his chopsticks.



11

ListImpartialTIs returns a list with all those transition instances that are

impartial.

ListImpartialTIs ()

returns the list:

[System'Put 1,System'Take 1]

This tells us that all infinite occurrence sequences (starting from the initial

marking) contains an infinite number of both transition instances.

ListFairTIs and ListJustTIs are analogous to ListImpartialTIs

except that they return those transition instances that are fair and just,

respectively. Impartiality implies fairness which in turn implies justice. Hence,

it is obvious that :

ListFairTIs ()

ListJustTIs ()

both return the list:

[System'Put 1,System'Take 1]

Below we show some model dependent queries. They are all taken from the

Occurrence Graph Manual:

All nodes in which a particular philosopher is eating can be found as follows

(where cf returns the coefficient of the specified colour in the specified

multi-set):

fun Eating (p:PH) : Node list

= PredAllNodes (fn n => cf(p,Mark.System'Eat 1

n) > 0)

The maximal number of simultaneously enabled transition instances can be

found as follows (where remdupl removes duplicates from a list, while map

uses the specified function on all the elements of the specified list):
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fun MaxTIEnabled () : int

= SearchAllNodes(

fn _ => true,

fn n =>

List.length(remdupl(List.map

ArcToTI(OutArcs n))),

0,

Int.max)

Checking whether there are reachable markings in which two neighbouring

philosophers simultaneously eat, can be done as follows (where next is a

function mapping each philosopher in its successor, ext_col extends a

function 'a -> 'b to a function 'a ms -> 'b ms, while <<= is the less-

than-equal operation on multi-sets):

fun next (ph i: PH) : PH

= if i<n then ph(i+1) else ph 1;

fun EatingNeighbours () : Node list

= PredAllNodes(fn n =>

let

val Eating = Mark.System'Eat 1 n

in

not(Eating + ext_col next Eating <<== PH)

end)

Checking whether there are nodes that violate the linear invariant:

M(Unused) + Chopsticks(M(Eat)) = CS

can be done in the following way (where <><> is the operator which checks

whether two multi-sets are different from each other):

fun InvariantViolations () : Node list

= PredAllNodes(fn n =>

Mark.System'Unused 1 n +

ext_ms Chopsticks (Mark.System'Eat 1 n) <><>

CS)
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The following function returns all the arcs where transition Take occurs on the

first instance of page System with the variable p bound to a specified

philosopher:

fun TakeChopsticks (p:PH) : Arc list

= PredAllArcs(fn a =>

case ArcToBE a

of Bind.System'Take (1,{p=p’}) => p=p'

| _ => false)

For the dining philosophers system the O-graph grows relatively slow – when

we increase the number of philosophers:

|PH| Nodes Arcs

2 3 4

3 4 6

4 7 16

5 11 30

6 18 60

7 29 112

8 47 208

9 76 378

10 123 680

15 1,364 11,310


