
Comms/CPN: A Communication Infrastructure for External

Communication with Design/CPN

Guy Gallasch and Lars Michael Kristensen

Computer Systems Engineering Centre

School of Electrical and Information Engineering

University of South Australia

Mawson Lakes Campus, SA 5095, AUSTRALIA

Email: fgalgy002@students.unisa.edu.au,lars.kristensen@unisa.edu.aug

Abstract. In this paper the development of Comms/CPN is presented. Comms/CPN is a

Standard ML library that augments Design/CPN with the necessary infrastructure to estab-

lish communication between CPN models and external processes. Comms/CPN is potentially

bene�cial in a number of areas such as allowing external visualisations of simulations, providing

CPN models with their own Graphical User Interface, and allowing CPN models to interact with

the physical environment. Comms/CPN has been successfully applied for providing external vi-

sualisation of the simulation of a CPN model within the area of avionics mission systems.

1 Introduction

Coloured Petri Nets (CPNs) [11,13], when constructed and simulated using the Design/CPN

tool [21], are restricted in their ability to interact with external processes. Extending the

Design/CPN tool by providing a communication infrastructure allows communication to

be established between CPN models and external processes. The Comms/CPN library [6]

presented in this paper has been developed to extend Design/CPN with such external com-

munication facilities.

The motivation behind developing external communication facilities comes from the desire

to visualise the simulation of CPN models. As demonstrated in [2, 23], it is often bene�cial

to extend CPN models with application speci�c graphics. The behavior of the system under

consideration can be visualised using di�erent kinds of graphical feedback. This provides a

view of system behavior useful for system developers and analysts, and can also be useful

for conveying knowledge and results about CPN models to people not familiar with CPN

modelling and analysis.

Currently, Design/CPN provides visualisation capabilities in two forms. The �rst is the

token game which displays the simulation of a CPN model in a very detailed fashion. The

second is by using high-level application speci�c graphics that can be added on top of a CPN

model. Mimic/CPN [1] and the Message Sequence Chart library [18] provide such high-

level graphics. However these methods are not always satisfactory. The token game is often

too detailed, and the application speci�c graphics are sometimes limited in capability and

capacity, and are tied to the Graphical User Interface (GUI) of Design/CPN. It is therefore

of interest to conduct visualisation using an external application. External applications can

be developed with greater graphical capabilities than those of Design/CPN, and there is the

potential to execute the external application on a remote machine.

The Comms/CPN library has been developed to allow communication between De-

sign/CPN and external processes via TCP/IP [4]. The main bene�ts that the Comms/CPN

infrastructure will provide in the context of visualisation are:

{ The infrastructure makes it possible to visualise the behavior of CPN models and control

their simulation independently of the Design/CPN GUI.

{ The infrastructure provides exibility, since other graphical libraries and packages are

likely to provide better support for visualisation than Design/CPN.

{ The infrastructure makes it possible to do the visualisation on remote machines provided

they support TCP/IP communication.

It should be stressed that Comms/CPN is not limited to use in external visualisation.

Comms/CPN has the potential to be bene�cial in many other areas. As an example, it could

be used to provide CPN models with their own GUI. The Design/CPN simulator is built

on the Standard ML (SML) [20,27] compiler and Comms/CPN is also implemented in SML.

This means that the Design/CPN GUI could be separated from the simulator, and a GUI

speci�c to the CPN model could be used instead. An example where this may be useful is when

applying CPN models in decision making processes, as shown in [15]. Using Comms/CPN,

it is also conceivable that CPN models could interact with the physical environment. Exam-

ples include temperature and light sensors, keypads, and displays (although such experiments

have not yet been conducted). Situations may also arise where computationally expensive al-

gorithms and procedures are needed withinDesign/CPN. With Comms/CPN, these can be

implemented and executed on remote machines, and the results can be sent back to the CPN

model. An example of this can be found in [17] where the condensed state space tool of De-

sign/CPN [12] relied on the GAP programming enviroment [7] for eÆcient manipulation of

algebraic groups. More generally, Comms/CPN makes it possible to integrate Design/CPN

and external applications via TCP/IP.

Comms/CPN was developed as a Practical Industrial Experience project in Computer

Systems Engineering at the University of South Australia. The development is part of a re-

search project being undertaken by the Air Operations Division (AOD) within the Australian

Defence Science and Technology Organisation (DSTO) [24] and the Computer Systems Engi-

neering Centre (CSEC) [3] at the University of South Australia. It involves the modelling and

analysis of Avionics Mission Systems (AMS) for testing and evaluation. Part of this research

involves providing visualisation of the simulation of CPN models by extending them with ap-

plication speci�c graphics. The external communication facilities provided by Comms/CPN

allow this visualisation to take place using an external visualisation package. The external

visualisation package itself is currently in the process of being developed, but a prototype

demonstrating a proof-of-concept exists.

The development of Comms/CPN is based upon previous work, in particular the Mas-

ter's thesis [19]. The work done in [19] however has some drawbacks as it was primarily

an encapsulation of TCP/IP. Only one connection could be opened, and this connection is

made to a location �xed at compile time, i.e. it could not be changed without re-switching

the CPN model. Comms/CPN extends the work presented in [19] in several ways. Firstly,

Comms/CPN allows dynamic creation of connections (also during the simulation of a CPN

model), the external process to which connections are being made is not �xed, and multiple

simultaneous connections are supported. Secondly, Comms/CPN implements a protocol on

top of TCP/IP for passing messages between Design/CPN and the external application.

It is planned to make Comms/CPN available for public use via the Design/CPN home

page [21].

This paper is organised as follows. Section 2 provides a description of the design and

requirements of the Comms/CPN library. Section 3 describes the implementation of the

Comms/CPN library. An example of the use of Comms/CPN for visualisation of the sim-

ulation of an AMS CPN model is presented in Section 4. Section 5 sums up the conclusions

and outlines future work in further developing Comms/CPN. The reader is assumed to be

familiar with CPN models and the Design/CPN tool.

2 Design Overview and Requirements

Comms/CPN is designed to act as an interface between CPN models and TCP/IP. Figure 1

shows the overall architecture of Comms/CPN and how it relates to Design/CPN and

TCP/IP. Comms/CPN consists of three main modules, organised as layers. The Communi-

cation Layer contains the interface to the underlying transport protocol, in this case TCP/IP,

and contains all TCP/IP and socket related primitive functions. The Messaging Layer is re-

sponsible for transforming the reliable byte stream service provided by the transport layer

into a service suitable for passing messages between Design/CPN and external applications.

The Connection Management Layer allows users to open, close, send to, and receive from

multiple connections. The Connection Management Layer is the layer that the CPN model

will normally interface to. When relating this to the Open Systems Interconnectivity (OSI)

model [26], Comms/CPN can be viewed as the session layer. The Communication Layer

provides an interface to TCP/IP, the transport layer of the OSI model. The Connection

Management Layer provides an interface to Design/CPN, the presentation layer.

CPN Model

Comms/CPN

Communication Layer

Messaging Layer

Connection Management Layer

TCP/IP

Fig. 1. Overall Architecture of Comms/CPN.

The design of all three layers has been based on �ve functional requirements representing

the services expected of the library. They are that Comms/CPN shall provide means for CPN

models to open connections to external processes, accept incoming connections requested by

external processes, send data to external processes, receive data from external processes, and

close connections to external processes. Comms/CPN has been designed as an SML library

to reect the non-functional requirements of allowing easy integration with the Design/CPN

tool, and so that the communication facilities are separate from the Design/CPN GUI. This

allows the communication facilities to be accessed using library functions that can be included

in code segments of transitions, auxiliary boxes, or in the top loop of the Design/CPN

simulator.

During the design and requirements processes of this architecture, three key design is-

sues were identi�ed. These are the Fundamental Method of Communication, Connections and

Connection Management, and Data Transfer. The design and requirements reect a desire to

make Comms/CPN applicable to the widest range of applications possible. In the following

subsections we discuss each of these design issues in detail.

2.1 Fundamental Method of Communication

The design decision was made for the underlying communication protocol to be TCP/IP.

This comes from the requirement that data transmissions must be error free and in-order,

and TCP/IP is a transport protocol that achieves this. TCP/IP is also desirable as it is

a standard protocol, and most devices implement a TCP/IP stack and most programming

environments (including SML) provide an interface to it through TCP/IP sockets.

Master thesis [19] examined the use of TCP/IP to communicate between Design/CPN

and external processes. It summarised the ideas and concepts from various papers and pub-

lications. Of particular importance was [14], focussing on interaction between Design/CPN

and Java processes. Two solutions were presented in [19] as to how TCP/IP communication

between Design/CPN and external processes could be realised. The �rst was called the Pure

TCP Solution in whichDesign/CPN connected directly to external applications via TCP/IP

using functions in a communication library. The second was called the Messenger Solution

in which library functions were used to communicate (via Unix pipes) with an external mes-

senger subprocess written in Java. The Java subprocess then used TCP/IP to communicate

with external processes.

Both the Pure TCP and Messenger solutions would provide usable communication facil-

ities. The fundamental design choice for Comms/CPN was made to choose the Pure TCP

solution for the design of Comms/CPN. Pure TCP provides for easier and tighter integra-

tion with Design/CPN, and can be used wherever Design/CPN is used. The Messenger

solution (following the suggested implementation in [19]) does not provide for easy or tight

integration because it uses a programming language other than SML. The Communication

Layer reects this decision. This layer provides an interface to TCP/IP for the Comms/CPN

library. The primitives provided in this layer are used by the Connection Management Layer

to establish TCP/IP connections to external processes, send and receive data in the form of

streams of bytes, and to close TCP/IP connections to external processes. Moreover, it is pos-

sible to implement an architecture similar to the the Messenger solution of [19] based purely

on Comms/CPN.

2.2 Connections and Connection Management

A connection represents a communication channel between a CPN model and an external

process. It is the Connection Management Layer that manages connections between CPN

models and external processes by creating, storing, and removing connection information.

Non functional requirements of the library state that the library must be capable of handling

multiple connections, and that these connections can be established dynamically during the

simulation of a CPN model. Also, requirements state that the library must provide a mecha-

nism for identifying connections and abstracting from low level socket identi�ers. The design

of the Connection Management Layer reects these requirements.

Connection Identi�cation. The connection identi�cation strategy adopted in the design of the

Connection Management Layer is to assign a unique string to each connection as it is made.

String identi�ers o�er the advantage of being more human-readable and recognisable than an

integer or a low level socket identi�er. A string can be provided by the user (to further aid

in recognisability) or it could be provided internally by Comms/CPN. Strings can easily be

used as tokens within a CPN model to pass connection identi�ers around during simulation

of the CPN model.

Connection Attributes. When a connection is created, it is necessary for information about

this connection to be recorded. These connection attributes must allow the connection to be

identi�ed and used. In order to identify the connection, the unique string identi�er must be

stored, and in order to use the connection, the low level TCP/IP socket identi�er must be

stored. The unique string identi�er allows connections to be identi�ed within CPN models, and

the low level TCP/IP socket is needed in order to send and receive data. Without recording

these two pieces of information, the establishment of connections becomes useless as there is

no way to identify them or to use them. Before a connection is established, a check is made

to ensure that the given unique string identi�er is in fact unique. If not, the connection is not

established. Multiple connections can be open simultaneously, so a data structure is needed

to store the connection attributes of more than one connection. The Connection Management

Layer contains a mechanism to do this, called the Connection Storage Mechanism, and a data

structure in which the attributes are stored. The data structure must allow new information

to be stored, existing information to be retrieved, and old information to be removed.

2.3 Data Transfer

A non functional requirement of Comms/CPN is that the library must have the capability to

send and receive all types of data, including user de�ned types (colour sets). This is important

in increasing the overall usefulness of Comms/CPN. TCP/IP dictates that data must be in

the form of a sequence of bytes for transmission across a network, so data objects must be

converted into this form for transmission.

The Messaging Layer ofComms/CPN within the Connection Management Layer provides

a solution. Generic send and receive functions that send and receive sequences of bytes,

regardless of the type of the data objects being transmitted, can be written and included

in the Connection Management Layer. This provides a way for users to send and receive

sequences of bytes without having the responsibility of implementing the actual sending and

receiving functions themselves.

In order to convert data objects to and from sequences of bytes, encoding and decoding is

necessary. An encoding function converts a data object into a form suitable for transmission

via TCP/IP, and a decoding function converts a sequence of bytes into a data object. SML,

being a functional programming language, allows functions to be passed as parameters. In

this way, encoding and decoding functions can be written for any data type desired, and can

then be passed as parameters to the generic send and receive functions. The generic send

function applies the encoding function to a data object in order to convert it to a suitable

form for transmission. Similarly, the generic receive function applies the decoding function to

a received sequence of bytes to form data objects. In this way, any type of data can be sent

or received, provided the corresponding encoding and decoding functions have been written.

Encoding and decoding functions for commonly used data types are supplied with the library,

e.g. for strings and integers.

Another non functional requirement is to ensure that data sent and received has a con-

sistent format regardless of its type. The virtual byte stream service provided by TCP/IP

allows for the transmission and reception of sequences of bytes. However, when dealing with

many di�erent types of data (including user de�ned types) this is not always adequate. A

more structured approach is required to delineate items of data from the virtual byte stream

to provide a better service than just a stream of bytes. Data needs to be packetised for trans-

mission so that when an item of data is sent, the receiver knows when all of it has arrived.

The solution to achieve this atomicity is to segment the stream of bytes, and to provide each

segment with a header that describes it. A segment of bytes (payload) together with its header

make up a data packet. A message is one or more of these packets.

The packet format chosen for Comms/CPN consists of a one byte header and a maximum

of 127 bytes of payload data. This is illustrated in Figure 2. Seven bits of the header indicate

the length of the payload data attached to it (i.e. 27 � 1 = 127 bytes) and the remaining

bit indicates whether this is the last packet in the transmission of the data item, in the case

where a data item is greater than 127 bits in length. In this way, the header allows variable

length data packets to be handled. It must be stressed that the maximum of 127 bytes of

payload data can easily be changed by choosing a di�erent sized header. What is important

is that the peer entity in the external process (with which communication is taking place)

implements the same protocol at the Messaging Layer.

The choice of a one-byte header is somewhat arbitrary, as there does not appear to have

been any studies conducted regarding ideal packet length when transferring data between

Design/CPN and external processes. It should be mentioned that other segmentation and

assembly protocols could be used to achieve the same service.

up to 127 bytes payload dataheader

1 byte

up to 128 bytes

Fig. 2. Packet format for transmission of data.

3 Implementation

This section describes the implementation of the design into a working Standard ML [8]

library. The implementation consists of SML library �les, one for each of the layers described

previously in Sect. 2.

3.1 The Communication Layer

The Communication Layer is implemented with TCP/IP as the underlying transport protocol.

It is designed to encapsulate the TCP/IP protocol and to provide users of this layer with a

shielded interface to the network functions provided by TCP/IP. The SML/NJ standard

library [25] contains a structure called Socket in which primitive operations on sockets are

available. The Communication Layer is based on this library.

Figure 3 lists the COMMS LAYER SML signature. This signature is implemented by

the CommsLayer structure constituting the Communication Layer. We describe each of the

primitives provided by the Communication Layer in more detail below.

signature COMMS_LAYER =

sig

type channel

exception BadAddr of string

val connect : string * int -> channel

val accept : int -> channel

val send : channel * Word8Vector.vector -> unit

val receive : channel * int -> Word8Vector.vector

val disconnect : channel -> unit

end;

Fig. 3. SML signature for Communication Layer.

Most of the implementation of the Communication Layer comes directly from [25]. The only

new datatype introduced is called channel. Its purpose is to allow the Connection Management

Layer to map string identi�ers to TCP/IP sockets without using any TCP/IP related code.

Below we give a brief description of each of the primitives.

connect Creates a connection, acting as a client, to an external process. The �rst argument

is used to specify the hostname of the external application, and the second argument is

used to specify the port number.

accept Waits for an incoming connection on the port speci�ed as the argument. The primitive

blocks until an external application connects, and the connection is then established.

send Sends the sequence of bytes speci�ed as the second argument on the channel speci�ed

as the �rst argument.

receive Receives the number of bytes speci�ed as the second argument on the channel spec-

i�ed as the �rst argument. The primitive will block until the speci�ed number of bytes

have been received on the channel.

disconnect Closes the connection speci�ed as the argument.

3.2 Messaging Layer

The Messaging Layer is implemented on top of the Communication Layer. Figure 4 lists the

MESSAGING LAYER SML signature. This signature is implemented by the MessagingLayer

structure constituting the Messaging Layer. The send function implements the transmission

of messages (speci�ed as a sequence of bytes) according to the protocol discussed in Sect. 2.3.

The data provided is segmented and appropriate headers are added to each segment. This

forms packets of data that are sent to the external process using the send function from the

Communication Layer. The receive function implements the reception of messages. It reads

one byte (the header byte) and the corresponding number of payload bytes from the channel

using the receive function from the Communication Layer. The InvalidDataExn exception will

be raised if received data does have the format speci�ed in Fig. 2.

signature MESSAGING_LAYER =

sig

type channel

exception InvalidDataExn of string

val send : channel * Word8Vector.vector -> unit

val receive : channel -> Word8Vector.vector

end

Fig. 4. SML signature for Messaging Layer.

3.3 Connection Management Layer

The Connection Management Layer builds on top of the Communication and Messaging Lay-

ers by providing the ability and interface to communicate with multiple external processes.

The connection storage mechanism is implemented in this layer. The Connection Management

Layer is implemented independently of TCP/IP and sockets. Instead it uses the services pro-

vided the Communication Layer and the Messaging Layer to interact indirectly with TCP/IP.

It is the functions in this layer that would normally be used in a CPN model.

Figure 5 lists the CONN MANAGEMENT LAYER SML signature. This signature is im-

plemented by the ConnManagementLayer structure constituting the Connection Management

Layer. The signature speci�es the type Connnection used to identity connections. The type

has been implemented as strings. We describe each of the primitives provided by the Com-

munication Layer in more detail below.

signature CONN_MANAGEMENT_LAYER =

sig

type Connection

exception ElementMissingExn of string

exception DupConnNameExn of string

val openConnection : Connection * string * int -> unit

val acceptConnection : Connection * int -> unit

val send : Connection * 'a * ('a -> Word8Vector.vector) -> unit

val receive : Connection * (Word8Vector.vector -> 'a) -> 'a

val closeConnection : Connection -> unit

end

Fig. 5. SML signature for Connection Management Layer.

openConnection Allows users to connect to external processes as a client. It takes three

input parameters. The �rst of these is the unique string identi�er (of type Connection)

to be associated with the new connection. The second and third are the host name and

port number that make up the address of an external process. The function �rst checks

to ensure the string identi�er given is unique, by searching the existing connections. A

DupConnNameExn exception is raised if this is not the case. The function then attempts

to create a connection to the external process by using the primitives from the Commu-

nication Layer. If successful, the appropriate information is stored and added to the list

of connections. The return type of this function is type unit.

acceptConnection Provides server behaviour, and allows external processes to connect to

Design/CPN. This function takes a Connection (string identi�er) and a port number as

input. The function checks that the given string identi�er is unique, and then listens on the

given port for incoming connection requests. This causes Design/CPN to block until an

incoming connection request is received. When this happens, a connection is established

with the external process requesting the connection.

send Allow users to send any type of data to external processes. The function is polymorphic,

in the sense that the data passed to it for sending can be of any type, including user de�ned

types. Three parameters are passed to this function as input. The �rst is a string identi�er

for the connection, the second is the data to send, and the third is a function to encode

the data to send. The purpose of the encoding function is to encode the data to send into

a sequence of bytes. This allows the data to be of any type, provided an encoding function

exists for that type. The send function retrieves the connection corresponding to the given

string identi�er. It then invokes the send primitive at the Messaging Layer. The return

type of this function is type unit.

receive Allows users to receive any type of data from an external process. The receive func-

tion is polymorphic in the same way as the send function. The parameters to this function

are a string identi�er and a decoding function, to decode the received byte vector into the

appropriate data type. The function begins by retrieving the connection from which data

will be received. It then invokes the receive from the Messaging Layer to receive the data.

The payload data (which was stored in the correct order when it was read) is then passed

to the decoding function. The resulting decoded data is then returned.

closeConnection Allows users to close a connection. The string identi�er of the connection

to be closed is passed to this function as the argument. A search of the connections is

conducted to ensure that a connection exists with that string identi�er. If the connection

does not exist, an ElementMissingExn exception is raised. The connection itself is closed

by calling the disconnect function from the Communication Layer. The stored connection

information is then removed from the list of connections. The return type of this function

is type unit.

4 Application of Comms/CPN

An external communication infrastructure was required as part of the research project on mod-

elling and analysis of avionics mission systems mentioned in the introduction. Comms/CPN

was developed for the purpose of providing external visualisation of the simulation of an

Avionics Mission System (AMS) CPN model.

Figure 6 illustrates the architecture of the visualisation facilities, and how Comms/CPN

�ts into this architecture. The idea is that Comms/CPN will provide the necessary commu-

nication infrastructure to allow data to be sent from the CPN model to an external animation

package which will then interpret this data and update the animation as necessary. The ar-

chitecture consists of three applications (processes). The Design/CPN GUI (left), the SML

process (middle), and the external Visualisation Package (right). The Design/CPN GUI

and the simulator part of the SML process communicates (in the usual way) for visualising

the token game during simulation in the Design/CPN GUI. This communication is done

via TCP/IP using the DMO module of the Design/CPN simulator. In addition to this, the

simulator part of the SML process now also communicates with the external Visualisation

Package via Comms/CPN.

Design/CPN GUI SML Process Visualisation Package

Simulator

Design/OA

Simulator

DMO
Comms/
CPN

 AMS
Visualisation

Java/CPN

TCP/IP

Fig. 6. Comms/CPN in the context of external visualisation.

The external visualisation package is currently under development. It is being implemented

in Java [10] and consists of two main modules. The AMS Visualisation module is the mod-

ule that provides the visualisation facilities. This module has been implemented using the

Java Swing library [9]. The Java/CPN module is the peer module of Comms/CPN at the

Java side. The Java/CPN module contains primitives similar to those in Comms/CPN to

enable communication, and implements the protocol described in Sect. 2.3. We describe the

Java/CPN module, the AMS visualisation module, and how it interacts with the AMS CPN

model in more detail in the following subsections.

4.1 Java/CPN

The purpose of Java/CPN is to allow Java processes to communicate with Design/CPN

through Comms/CPN. The current implementation of Java/CPN is the minimal imple-

mentation necessary to enable communication. It incorporates the equivalent functionality

of the Messaging and Communication layers from Comms/CPN. The Communication Layer

functionality from Comms/CPN and TCP/IP is already encapsulated in the Socket objects

provided by Java through the use of Socket methods and the input and output streams avail-

able from the socket itself.

No connection management has been implemented within Java/CPN as this is a minimal

implementation, however the important thing is that it implements the same protocol as the

Messaging Layer from Comms/CPN as described in Sect. 2.3 . The interface of Java/CPN

is shown in Figure 7. As in Comms/CPN, generic send and receive functions have been

provided at the level of the Messaging Layer, meaning that sequences of bytes are passed to

the send method and returned from the receive method. The connect, accept, and disconnect

methods have been provided at the level of the Communication Layer from Comms/CPN.

The deliberate attempt was made to make the interface as close to that of Comms/CPN as

possible. We describe each of the methods within Java/CPN in more detail below.

The connect method acts in the same way as the connect method from the Communication

Layer of Comms/CPN. It takes a host name and port number as arguments, and attempts

to establish a connection as a client to the given port on the given host. This method does

not return a value. Once the connection has been established (i.e. the socket opened) input

import java.util.*;

import java.net.*;

import java.io.*;

public interface JavaCPNInterface

{

public void connect(String hostName, int port);

public void accept(int port);

public void send(ByteArrayInputStream sendBytes) throws SocketException;

public ByteArrayOutputStream receive() throws SocketException;

public void disconnect();

}

Fig. 7. Interface to Java/CPN.

and output streams are extracted from the socket to enable the transmission and reception

of bytes.

The accept method also acts in the same way as the accept method from the Communica-

tion Layer of Comms/CPN. It takes a port number as an argument and, acting as a server,

listens on the given port number for an incoming connection request. When received, it es-

tablishes the connection. Again, once the connection has been established, input and output

streams are extracted from the socket to enable the transmission and reception of bytes. This

method does not return a value.

The send method takes a ByteArrayInputStream object (a Java object for holding se-

quences of bytes, acting as input) as the argument. The segmentation into packets occurs in

a similar way to that which occurs in the Messaging Layer of Comms/CPN. Bytes are read

from the ByteArrayInputStream object, a maximum of 127 at a time, and a header added as

described in Sect. 2.3. The data packets formed are then transmitted to the external process

through methods acting on the output stream of the socket. The send method does not return

a value.

The receive method has no arguments. It uses methods that act on the input stream of the

socket to �rstly receive a header byte, and then receive the number of payload bytes speci�ed

in the header, from the external process. The payload bytes are stored in a ByteArrayOut-

putStream object (a Java object for storing bytes as output) as each segment of payload

data is received. This process is repeated until all data has been received for the current

implementation. The receive method returns the ByteArrayOutputStream object.

The disconnect method has no arguments, and returns no value. It acts in the same way

as the disconnect function from the Communication Layer of Comms/CPN, except that it

also closes the input and output streams from the socket before the socket itself is closed.

Methods external to the Java/CPN class must be used to convert from data (i.e. a string)

into a ByteArrayInputStream object, and from a ByteArrayOutputStream object back into

data. This is akin to the encoding and decoding functions passed into the send and receive

functions of the Connection Management Layer in Comms/CPN.

4.2 Visualisation of Avionics Mission Systems

An Avionics Mission System (AMS) consists of a number of subcomponents connected via

a serial data bus. The serial data bus (SDB) is controlled by the Mission Control Computer

(MCC), and subcomponents communicate by the exchange of data across the SDB. An initial

CPN model of a generic AMS [16,22] has been constructed, capturing the AMS at a high level

of abstraction, including communication between subcomponents. In this section we show how

Comms/CPN can be used to visualise this communication.

A snapshot from a prototype display of the visualisation package is shown in Figure 8.

The display shows the various subcomponent of the AMS connected to the SDB. Each time

two components communicate via the SDB, the external visualisation package will show this

communication by highlighting the two subcomponents and the SDB. The simulation will

then block until the user clicks on the Continue button.

Fig. 8. Snapshot from the external visualisation package.

In order to provide external communication facilities, the Comms/CPN library must be

included in the CPN model. This consists of loading a number of SML �les using the SML use

command. For the AMS CPN model, the visualisation is done using code segments attached

to the transitions. Opening and closing the connection to the external Visualisation Package

is done by evaluating SML code in auxiliary boxes.

Of particular interest in providing visualisation of SDB communication is the Serial-

DataBus subpage of the AMS CPN model. This page is shown in Figure 9. Each subcompo-

nent of the AMS has a unique address associated with it, and the Transmit transition on this

subpage models the actual transmission of messages across the SDB. Two auxiliary boxes con-

tainingComms/CPN primitives have been added to the top left of this page. When evaluated,

the �rst opens a connection using the openConnection primitive in the ConnManagement-

Layer structure, and the second closes the connection using the closeConnection primitive in

the ConnManagementLayer structure which constitutes the Connection Management Layer

of Comms/CPN.

A code segment has been attached to the Transmit transition. This code segment calls

the function shown in Figure 10. The purpose of this function is to take the addresses of the

sender and receiver, map them to integers, transmit these two integers to the external visu-

alisation package, and then await a response before continuing the simulation. The external

visualisation package interprets the two integers as the corresponding sender and destination

and updates the animation to reect this data transfer. The Comms/CPN send primitive is

SDB

P I/O

ComponentxSDBMsg

Transmit

[destcomp = (#dest sdbmsg)]

C

input (sdbmsg);
output ();
action
 DisplayComm(sdbmsg);

ConnManagementLayer.openConnection(extdisplay, "localhost", 9000);

ConnManagementLayer.closeConnection(extdisplay);

(SDB,sdbmsg)

(destcomp,sdbmsg)

Fig. 9. The SerialDataBus page of the AMS CPN model.

used to send the two integers, and the receive primitive is used to receive the response from

the visualisation package caused by the user clicking on the Continue button.

val extdisplay = "extdisplay"; (* --- name of connection --- *)

(* --- map subcomponent to an identifier --- *)

fun ComponentOpcode (MCC _) = "1"

| ComponentOpcode (DISPLAYPROC (DISPLAY HUD)) = "2"

| ComponentOpcode (DISPLAYPROC (DISPLAY MPD)) = "3"

| ComponentOpcode (SENSOR ADC) = "4"

| ComponentOpcode (SENSOR RADAR) = "5"

| ComponentOpcode (SENSOR RALT) = "6"

| ComponentOpcode (SENSOR WRW) = "7"

| ComponentOpcode (SENSOR INS) = "8";

(* --- update the external display and wait for Continue --- *)

fun DisplayComm ({src,dest,...} : SDBMsg) =

let

val (src', dest') = (ComponentOpcode src, ComponentOpcode dest)

in

ConnManagementLayer.send(extdisplay,src'^","^dest',stringEncode);

ConnManagementLayer.receive(extdisplay, stringDecode);

()

end;

Fig. 10. SML functions for visualising SDB communication.

5 Conclusions and Future Work

Comms/CPN originated from a desire to provide visualisation of the simulation of AMS CPN

models. Existing methods of visualisation were not satisfactory in this case, either through

being too detailed or by having limited capability and being tied to theDesign/CPN GUI. By

developing an external visualisation package, access to greater graphical capabilities becomes

possible and visualisation is no longer tied to the Design/CPN GUI. Comms/CPN provides

the necessary communication infrastructure to allow the external visualisation to take place.

The functional and non functional requirements of this library were considered and it was

determined that �ve main functions must be provided, i.e. opening and accepting connec-

tions, sending data to and receiving data from external processes, and closing connections.

It was also determined that the library must support multiple simultaneous connections and

allow dynamic creation of connections. From these requirements, the library was designed.

Three areas of design were considered. They were the fundamental method of communication,

connection management, and data transfer. The architecture of Comms/CPN was de�ned

to consist of three layers, sitting between Design/CPN and TCP/IP. The Communication

Layer provides the interface to TCP/IP, the Messaging Layer introduces message passing

scheme, and the Connection Management Layer provides the interface to Design/CPN.

The current implementation of the library poses some diÆculties when it comes to ac-

cepting incoming connection requests and receiving data. When listening for an incoming

connection request, Design/CPN blocks causing the simulation of the CPN model to block

also. The same situation occurs when a receive operation is called but there is no data to

receive. This blocking property is unfortunate if Design/CPN is performing a simulation,

because it causes the entire simulation to block (as Design/CPN is purely single threaded.)

One possible area for investigation in the future is to provide non-blocking options for both

the receive and accept operations. This is one area where using a messenger subprocess would

have provided a relatively simple solution, as discussed Sect. 2. There is a possibility that in

the future, Comms/CPN could be used in conjunction with an external subprocess, to form

a hybrid Pure TCP and Messenger solution. A system call similar to the select call in the C

programming language would also provide a solution. Using Concurrent ML (CML) [5] instead

of SML as the programming language for the Design/CPN simulator and for Comms/CPN

would eliminate the blocking issues and so would also provide a solution.

Currently, the library only facilitates each connection to be connected to a single external

process. To connect to more than one external process, multiple connections are used. It

may be possible to extend the library functions to allow multicasting whereby more than one

external process can receive the same data from a single connection. In this way multiple

external processes will receive exactly the same data. Such multicasting would be useful when

using this library for the purposes of visualisation of Design/CPN simulations because it

would allow exactly the same visualisation to be seen on di�erent remote machines.

When a connection is created, the current implementation requires the user to provide the

unique identi�er. Future implementations of this library may give Design/CPN the ability

to provide this unique identi�er itself, and to return this automatically generated identi�er

to the user for subsequent use.

Another area of future development would involve the creation of communication modules

like Java/CPN for other programming languages, such as C/CPN, Perl/CPN and so on.

Another issue to consider as part of future work is to make Comms/CPN and Java/CPN

libraries more fault tolerant.

Acknowledgments. The work presented in this paper was supported by the Australian Defence

Science and Technology Organisation (DSTO) under contract no. 687237, and by a Divisional

Small Grant from the University of South Australia. The authors also acknowledge valuable

comments and feedback from Prof. Jonathan Billington.

References

1. Animation by Mimic/CPN. http://www.daimi.au.dk/designCPN/libs/mimic/.

2. C. Capellmann, S. Christensen, and U. Herzog. Visualising the Behaviour of Intelligent Networks. In

Services and Visualisation, Towards User-Friendly Design, volume 1385 of Lecture Notes in Computer

Science, pages 174{189. Springer-Verlag, 1998.

3. Computer Systems Engineering Centre. http://www.unisa.edu.au/eie/csec.

4. D. E. Comer. Computer Networks and Internets. Prentice-Hall International, Inc., 1997.

5. Concurrent ml. http://cm.bell-labs.com/cm/cs/who/jhr/sml/cml/index.html.

6. G. Gallasch and L. M. Kristensen. Comms/CPN library.

http://www.daimi.au.dk/designCPN/libs/commscpn/.

7. The GAP Group, Aachen, St Andrews. GAP { Groups, Algorithms, and Programming, Version 4.2, 1999.

(http://www-gap.dcs.st-and.ac.uk/~gap).

8. R. Harper. Programming in Standard ML. School of Computer Science, Carnegie Mellon University,

http://www.cs.cmu.edu/ rwh/introsml/, 2000.

9. Java swing library. http://java.sun.com/products/jfc/tsc/index.html.

10. java.sun.com - The Source for Java(TM) Technology. http://www.java.sun.com/.

11. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Volume 1, Basic

Concepts. Monographs in Theoretical Computer Science. Springer-Verlag, 1992.

12. J. B. J�rgensen and L. M. Kristensen. Design/CPN Condensed State Space Tool Manual. Department of

Computer Science, University of Aarhus, Denmark, 1996.

Online: http://www.daimi.au.dk/designCPN/.

13. L. M. Kristensen, S. Christensen, and K. Jensen. The Practitioner's Guide to Coloured Petri Nets.

International Journal on Software Tools for Technology Transfer, 2(2):98{132, 1998.

14. O. Kummer, D. Moldt, and F. Wienberg. A Framework for Interacting Design/CPN- and Java-Processes.

In J. Kleijn and S. Donateli, editors, Applications and Theory of Petri Nets, volume 1639 of Lecture Notes

in Computer Science. Springer-Verlag, 1999.

15. B. Lindstr�m. Web Based Interfaces for Simulation of Coloured Petri Net Models. In K. Jensen,

editor, Proceedings of Workshop on Practical Use of High-level Petri Nets, pages 15{32. Depart-

ment of Computer Science, University of Aarhus, Denmark, 2000. DAIMI PB-547. Available via

http://www.daimi.au.dk/pn2000/proceedings/.

16. C. Douglass Locke, L. Lucas, and J. B. Goodenough. Generic Avionics Software Speci�cation. Technical

Report CMU/SEI-90-TR-8, Software Engineering Institute, Carnegie Mellon University, December 1990.

17. L. Lorentsen and L. M. Kristensen. Exploiting Stabilizers and Parallelism in State Space Generation

with the Symmetry Method. In Proceedings of International Conference on Application of Concurrency

in System Design (ICACSD'2001), pages 211{220. IEEE Computer Society, 2001.

18. Design/CPN Message Sequence Charts library.

http://www.daimi.au.dk/designCPN/libs/mscharts/.

19. S. Nimsgern and F. Vernet. Communication between Coloured Petri Net Simulations and External Pro-

cesses. Master's thesis, Department of Computer Science, University of Aarhus, 2000.

20. Standard ML of New Jersey. http://cm.bell-labs.com/cm/cs/what/smlnj/.

21. Design/CPN Online. http://www.daimi.au.dk/designCPN/.

22. Z. Qureshi, L. M. Kristensen, and J. Billington. Towards Modelling and Analysis of Avionics Mission

Systems using Coloured Petri Nets and Design/CPN. Technical report, Defense Science and Technology

Organisation, 2001. Divisional Dissussion Paper.

23. J. L. Rasmussen and M. Singh. Designing a Security System by Means of Coloured Petri Nets. In

Proceedings of ICATPN'96, volume 1091 of Lecture Notes in Computer Science, pages 400{419. Springer-

Verlag, 1996.

24. Australien Defence Science and Technology Organisation.

http://www.dsto.defence.gov.au.

25. SML/NJ library.

http://cm.bell-labs.com/cm/cs/what/smlnj/doc/smlnj-lib/index.html.

26. W. Stallings. Data and Computer Communications. Prentice-Hall, 2000.

27. J. D. Ullman. Elements of ML Programming. Prentice-Hall, 1998.

