

prof.dr.ir. Wil van der Aalst

Technische Universiteit
Eindhoven
University of Technology

Where innovation starts

Outline

- On the relation between processes, systems, and models
- Basic model: Transition systems
- Process models versus object/data models
- Petri nets and other process modeling languages
- Applications/tools
- Process-aware information systems: Trends

On the relation between processes, systems, and models

On the relation between information systems and processes

Three good reasons for making a process model:

- gain insight for a better understanding of the system
- analysis
 validation and verification
- specification
 a blue print for construction

Basic model: Transition systems

- Any discrete dynamic system can be described as a transition system.
- Low level model: Mother of all (process) models.
- Elements:
 - State
 - Transition
 - State space
 - Transition relation

Discrete dynamic systems

- •Y-axis is state space.
- •Bullets are transitions (no continuous changes, only discrete ones).
- •One possible execution: Transition relation is not described.

Definitions

- A transition system is specified by a pair (S,TR)
 - S is the state space
 - TR ⊆ S x S is the transition relation
- The elements of S (state space) are states.
- The elements of TR (transition relation) are transitions.
- 1) Model a light bulb with three states (on, off, broken).
- 2)Model a queue in a supermarket.

Example: Elevator

- State space: S =
 { (floor, direction) ∈ IN x {-1,0,1} |
 (1 ≤ floor ≤ 6) ∧
 (floor = 1) ⇒ (direction ≥ 0) ∧
 (floor = 6) ⇒ (direction ≤ 0) }
- Transition relation: $TR = \{((1,0),(1,1)), ((1,1),(2,1)), ((1,1),(2,0)), ...\}$

Describe transition relation formally. Give graphical representation.

Exercise: Make transition system

- Consider a circular railroad system with 4 tracks (0,1,2,3) and 2 trains (A,B). No two trains should be at the same track at the same time. Trains can only move clockwise.
- Imagine how this would be if there are 50 tracks or more complex rules like claiming the next track or keeping tracks free in-between trains.

Exercise

- Consider two parallel queues in a supermarket
- Describe transition relation formally.
- Give graphical representation.

State explosion problem

Large state spaces ...

link layer of the IEEE1394 standard (FireWire) simulated using two communication nodes and a bus (25,000 states)

Process models versus object/data models

object/data model

system model = process model + data/object model

Example of a data/object model: A UML class diagram

Other data/object modeling techniques

- Entity-Relationship (ER) diagrams
- Crow's Foot diagrams
- NIAM/ORM diagrams

Example of a process model: A Petri net modeling order processing

CPN Tools 3 (download from cpntools.org)

Other process modeling techniques

- UML activity/statechart diagrams
- Event-driven Process Chains (EPCs)
- IDEF/DFD diagrams
- BPMN/BPEL
- Etc.

Applications of process modeling in concrete products

- Business modeling tools: Protos, ARIS, ...
- Simulation tools: ExSpect, Arena, Simula, ...
- Verification tools: Woflan, ...
- Petri net tools: Design CPN, CPN Tools, ...
- Workflow management systems: Staffware, COSA, MQSeries Workflow, BPM|one, ...
- Enterprise resource planning systems: SAP, Baan, JD Edwards, Oracle, PeopleSoft, ...
- Project planning tools: Microsoft project, ...
- Web services languages: BPML, BPEL4WS, ...

•

Business process modeling tools

Protos

Design, communication, (export to) analysis and/or implementation

Based on Petri nets

Business process modeling tools (2)

Business process modeling tools (3)

ARIS

Design, communication, (export to) analysis and/or implementation, import of real data.

Based on EPCs

Business process modeling tools (4)

SAP reference model (>600 EPCs)

Business process modeling tools (5)

Simulation tools

ExSpect

Rapid prototyping, performance analysis, validation, gaming.

Based on Petri nets.

Simulation tools (2)

Arena

Verification tools

Woflan

Detecting errors.

Based on Petri nets.

Process Mining tools (1)

Process mining tools (2)

Petri net tools

CPN Tools

Design and analysis

Based on Petri nets.

Workflow management systems

Staffware workflow designer

Workflow management systems (2)

Staffware worklist handler

Based on a vendor specific language.

Enactmen t

Workflow management systems (3)

COSA

Enactment

Based on Petri nets.

Workflow management systems (4)

Enterprise resource planning (ERP) BaaN systems

Baan (DEM)

Design, training, configuratio n, and enactment

Based on Petri nets.

CORDYS

Enterprise resource planning (ERP) systems (2)

SAP (workflow)

Design, training, configuration, and enactment

Also EPC view

Project planning

MS project

Planning

cf. PERT/CPM

Web services

Oracle BPEL

Enactment based on BPEL standard

<copy>

```
<sequence name="main"><!-- Receive input from requestor.</pre>
    Note: This maps to operation defined in CFP23 flow.wsdl
    <receive name="receiveInput" partnerLink="client"</pre>
portType="client:CFP23 flow" operation="process"
variable="inputVariable" createInstance="yes"/><!-- Generate reply to
synchronous request -->
    <assign name="Assign 4">
        <from variable="inputVariable" part="payload"</pre>
query="/client:CFP23 flowProcessRequest/client:input"/>
        <to variable="outputVariable" part="payload"</pre>
query="/client:CFP23 flowProcessResponse/client:result"/>
      </copy>
    </assign>
    <flow name="Flow 1">
      <sequence name="Sequence 3">
        <wait name="Wait 1" for="'PT1M'"/>
        <assign name="Assign 3">
```


Partner Links

Partner Links

IBM Websphere (also uses BPEL)

WebSphere Business Modeler (flowcharts are translated into BPEL)

Worklist in WebSphere

Management information in WebSphere

As shown ...

processes & process models are everywhere!!

Business process models versus information system models

PAGE 45

Lifecycle of Business Information Systems

Some trends

Preview

- Classical Petri net
- Extensions with
 - Color (data)
 - Time
 - Hierarchy
- Colored Petri Nets (CPN) language
- Analysis of processes
 - state-space analysis
 - structural methods
 - process mining
 - simulation
- Design patterns
- Other modeling techniques (UML, EPC, BPMN, ...)