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Design-time analysis vs run-time analysis
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e.g., systems like 
WebSphere, 
Oracle, TIBCO/
Staffware, SAP, 
FLOWer,  etc.

e.g., dedicated formats 
such as IBM’s 
Common Event 
Infrastructure (CEI) and 
MXML or proprietary 
formats stored in flat 
files or database 
tables.

e.g. process models 
represented in BPMN, 
BPEL, EPCs, Petri nets, 
UML AD, etc. or other 
types of models such as 
social networks, 
organizational networks, 
decision trees, etc.
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Relevant material

1. Jörg Desel, Wolfgang Reisig: Place/Transition Petri Nets. Petri 
Nets 1996: 122-173. DOI: 10.1007/3-540-65306-6_15 
http://www.springerlink.com/content/x6hn592l35866lu8/fulltext.pdf

2. Tadao Murata, Petri Nets: Properties, Analysis and 
Applications, Proceedings of the IEEE. 77(4): 541-580, April, 
1989. http://dx.doi.org/10.1109/5.24143 
http://ieeexplore.ieee.org/iel1/5/911/00024143.pdf

3. Wil van der Aalst: Process Mining: Discovery, Conformance 
and Enhancement of Business Processes, Springer Verlag
2011 (chapters 1 & 5)

a) Chapter 1: DOI: 10.1007/978-3-642-19345-3_1 
http://www.springerlink.com/content/p443h219v3u3537l/fulltext.pdf

b) Chapter 5: DOI: 10.1007/978-3-642-19345-3_5 
http://www.springerlink.com/content/u58h17n3167p0x1u/fulltext.pdf

c) Events logs: http://www.processmining.org/book/ 

Today's focus is on 3.
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Process Discovery



Process discovery
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Process discovery = Play-In
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event log process model

Play-In

event logprocess model

Play-Out

event log process model

Replay

• extended model 
showing times, 
frequencies, etc.

• diagnostics
• predictions
• recommendations



Example
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Event log contains all possible 
traces of model and vice versa.



Another example
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Generalization: event log contains only subset 
of  all possible traces of model.



Notation is less relevant (e.g. BPMN)
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Another BPMN example

PAGE 10

a

b

c

df

p2

end

p4

p3p1

start

e

p5

a

start end

b

c

e

d

f



Challenge

• In general, there is a trade-off between the following 
four quality criteria:

1.Fitness: the discovered model should allow for the 
behavior seen in the event log.

2.Precision (avoid underfitting): the discovered model 
should not allow for behavior completely unrelated 
to what was seen in the event log.

3.Generalization (avoid overfitting): the discovered 
model should generalize the example behavior seen 
in the event log.

4.Simplicity: the discovered model should be as 
simple as possible.
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α Algorithm



Process Discovery: 
example of algorithm
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α
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>,→,||,# relations

• Direct succession: x>y iff 
for some case x is directly 
followed by y.

• Causality: x→y iff x>y and 
not y>x.

• Parallel: x||y iff x>y and 
y>x

• Choice: x#y iff not x>y and 
not y>x.

a>b
a>c
a>e
b>c
b>d
c>b
c>d
e>d

a→b
a→c
a→e
b→d
c→d
e→d

b||c
c||b

abcd
acbd
aed

b#e
e#b
c#e
a#d
…
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Basic Idea Used by α Algorithm (1)

a b

(a) sequence pattern: a→b
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Basic Idea Used by α Algorithm (2)

a

b

c

(b) XOR-split pattern:
a→b, a→c, and b#c

a

b

c

(c) XOR-join pattern:
a→c, b→c, and a#b

a

b

c

(b) XOR-split pattern:
a→b, a→c, and b#c
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Basic Idea Used by α Algorithm (3)

a

b

c

(d) AND-split pattern:
a→b, a→c, and b||c

a

b

c

(e) AND-join pattern:
a→c, b→c, and a||b

a

b

c

(d) AND-split pattern:
a→b, a→c, and b||c



Example Revisited
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end
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Result produced by α algorithm

a>b
a>c
a>e
b>c
b>d
c>b
c>d
e>d

a→b
a→c
a→e
b→d
c→d
e→d

b||c
c||b

b#e
e#b
c#e
a#d
…



Footprint of L1
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Footprint of L2

PAGE 20

a

b

c

df

p2

end

p4

p3p1

start

e

p5



Simple patterns
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a b

(a) sequence pattern: a→b

a

b

c

(b) XOR-split pattern:
a→b, a→c, and b#c

a

b

c

(c) XOR-join pattern:
a→c, b→c, and a#b

a

b

c

(d) AND-split pattern:
a→b, a→c, and b||c

a

b

c

(e) AND-join pattern:
a→c, b→c, and a||b



Algorithm
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Let L be an event log over T. α(L) is defined as follows. 
1. TL = { t ∈ T | ∃σ ∈ L t ∈ σ}, 
2. TI = { t ∈ T | ∃σ ∈ L t = first(σ) }, 
3. TO = { t ∈ T | ∃σ ∈ L t = last(σ) }, 
4. XL = { (A,B) | A ⊆ TL ∧ A ≠ ø ∧ B ⊆ TL ∧ B ≠ ø ∧

∀a ∈ A∀b ∈ B a →L b ∧ ∀a1,a2 ∈ A a1#L a2 ∧ ∀b1,b2 ∈ B b1#L b2 }, 
5. YL = { (A,B) ∈ XL | ∀(A′,B′) ∈ XL

A ⊆ A′ ∧B ⊆ B′⇒ (A,B) = (A′,B′) }, 
6. PL = { p(A,B) | (A,B) ∈ YL } ∪{iL,oL}, 
7. FL = { (a,p(A,B)) | (A,B) ∈ YL ∧ a ∈ A } ∪ { (p(A,B),b) | (A,B) ∈

YL ∧ b ∈ B } ∪{ (iL,t) | t ∈ TI} ∪{ (t,oL) | t ∈ TO}, and 
8. α(L) = (PL,TL,FL). 



Key idea: find places
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a1

...

a2

am

b1

b2

bn

p(A,B) ...

A={a1,a2, … am} B={b1,b2, … bn}

4. XL = { (A,B) | A ⊆ TL ∧ A ≠ ø ∧ B ⊆ TL ∧ B ≠ ø ∧
∀a ∈ A∀b ∈ B a →L b ∧ ∀a1,a2 ∈ A a1#L a2 ∧ ∀b1,b2 ∈ B b1#L b2 }, 

5. YL = { (A,B) ∈ XL | ∀(A′,B′) ∈ XL
A ⊆ A′ ∧B ⊆ B′⇒ (A,B) = (A′,B′) }, 



Places as footprints
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a1

...

a2

am

b1

b2

bn

p(A,B) ...

A={a1,a2, … am} B={b1,b2, … bn}
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Another event log L3
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Model for L3
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a b
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Another event log L4
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Event log L5
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Discovered model
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Limitations of the α
Algorithm



Limitation of α algorithm
(implicit places)
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Green places are implicit!



Limitation of α algorithm
(loops of length 1)

PAGE 34

a c

b

a c

b



Limitation of α algorithm
(loops of length 2) 
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Limitation of α algorithm
(non-local dependencies) 
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b

c

a

e

dp1

p2

Green places are not discovered!



Difficult constructs for α algorithm
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Taking the transactional life-cycle into 
account
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Rediscovering process models

PAGE 39

The rediscovery problem: Is the discovered model 
N’ equivalent to the original model N?

discovered
process
model

original process 
model event

log

simulate discover

N=N’ ?
N N’



Challenge: finding the right 
representational bias
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a a

start endp

There is no WF-net with unique visible labels that exhibits this behavior.



Another example
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a b

start endp1

c

τ

p1

(a)

a b

start endp1

c

p1

(b)

a

a b

start endp1

c

p1

(c)

There is no WF-
net with unique 
visible labels 
that exhibits this 
behavior.



Challenge: noise and incompleteness

• To discover a suitable process model it is 
assumed that the event log contains a 
representative sample of behavior.

• Two related phenomena:
−Noise: the event log contains rare and 

infrequent behavior not representative for 
the typical behavior of the process.

− Incompleteness: the event log contains 
too few events to be able to discover 
some of the underlying control-flow 
structures.
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More on incompleteness

PAGE 43

See also chapter 3 (cross-validation, precision, recall, etc.)
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Challenge: Balancing 
Between Underfitting and 
Overfitting



Challenge: four competing quality 
criteria
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process 
discovery

fitness

precisiongeneralization

simplicity

“able to replay event log” “Occam’s razor”

“not overfitting the log” “not underfitting the log”



Flower model
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What is the best model?

A D

C
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A D
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EB
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BCE
BCD
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0
85
0

http://upload.wikimedia.org/wikipedia/commons/0/03/Green_check.svg�
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What is the best model?

A D

C
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http://upload.wikimedia.org/wikipedia/commons/0/03/Green_check.svg�
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What is the best model?

A D

C
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A D
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BCE
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85
3



Example: one log four models
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a
start register 

request

bexamine 
thoroughly

cexamine 
casually

d check
ticket

decide

pay 
compensation

reject 
request

reinitiate 
requeste

g

hf
end

a
start register 

request

c
examine 
casually

d
check
ticket

decide reject 
request

e h
end

N3 : fitness = +, precision = -, generalization = +, simplicity = +

N2 : fitness = -, precision = +, generalization = -, simplicity = +

a
start register 

request

b
examine 

thoroughly

c
examine 
casually

d
check ticket

decide

pay 
compensation

reject 
request

reinitiate 
request

e

g

h

f

end

N1 : fitness = +, precision = +, generalization = +, simplicity = +

a
start register 

request

c
examine 
casually

d
check
ticket

decide reject 
request

e h
end

N4 : fitness = +, precision = +, generalization = -, simplicity = -

a
register 
request

d
examine 
casually

c
check
ticket

decide reject 
request

e h

a c
examine 
casually

d
check
ticket

decide

e g

a d
examine 
casually

c
check
ticket

decide

e g

register 
request

register 
request

pay 
compensation

pay 
compensation

a
register 
request

b d
check
ticket

decide reject 
request

e h

a
register 
request

d b
check
ticket

decide reject 
request

e h

a b d
check
ticket

decide

e g
register 
request

pay 
compensation

examine 
thoroughly

examine 
thoroughly

examine 
thoroughly

… (all 21 variants seen in the log)

acdeh

abdeg

adceh

abdeh

acdeg

adceg

adbeh

acdefdbeh

adbeg

acdefbdeh

acdefbdeg

acdefdbeg

adcefcdeh

adcefdbeh

adcefbdeg

acdefbdefdbeg

adcefdbeg

adcefbdefbdeg

adcefdbefbdeh

adbefbdefdbeg

adcefdbefcdefdbeg

455

191

177

144

111

82

56

47

38

33

14

11

9

8

5

3

2

2

1

1

1

# trace

1391

process 
discovery

fitness

precisiongeneralization

simplicity

“able to replay event log” “Occam’s razor”

“not overfitting the log” “not underfitting the log”



Model N1
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acdeh

abdeg

adceh

abdeh

acdeg

adceg

adbeh

acdefdbeh

adbeg

acdefbdeh

acdefbdeg

acdefdbeg

adcefcdeh

adcefdbeh

adcefbdeg

acdefbdefdbeg

adcefdbeg

adcefbdefbdeg

adcefdbefbdeh

adbefbdefdbeg

adcefdbefcdefdbeg

455

191

177

144

111

82

56

47

38

33

14

11

9

8

5

3

2

2

1

1

1

# trace

1391

a
start register 

request

b
examine 

thoroughly

c
examine 
casually

d
check ticket

decide

pay 
compensation

reject 
request

reinitiate 
request

e

g

h

f

end

N1 : fitness = +, precision = +, generalization = +, simplicity = +



Model N2
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acdeh

abdeg

adceh

abdeh

acdeg

adceg

adbeh

acdefdbeh

adbeg

acdefbdeh

acdefbdeg

acdefdbeg

adcefcdeh

adcefdbeh

adcefbdeg

acdefbdefdbeg

adcefdbeg

adcefbdefbdeg

adcefdbefbdeh

adbefbdefdbeg

adcefdbefcdefdbeg

455

191

177

144

111

82

56

47

38

33

14

11

9

8

5

3

2

2

1

1

1

# trace

1391

a
start register 

request

c
examine 
casually

d
check
ticket

decide reject 
request

e h
end

N2 : fitness = -, precision = +, generalization = -, simplicity = +



Model N3
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acdeh

abdeg

adceh

abdeh

acdeg

adceg

adbeh

acdefdbeh

adbeg

acdefbdeh

acdefbdeg

acdefdbeg

adcefcdeh

adcefdbeh

adcefbdeg

acdefbdefdbeg

adcefdbeg

adcefbdefbdeg

adcefdbefbdeh

adbefbdefdbeg

adcefdbefcdefdbeg

455

191

177

144

111

82

56

47

38

33

14

11

9

8

5

3

2

2

1

1

1

# trace

1391

a
start register 

request

bexamine 
thoroughly

cexamine 
casually

d check
ticket

decide

pay 
compensation

reject 
request

reinitiate 
requeste

g

hf
end

N3 : fitness = +, precision = -, generalization = +, simplicity = +



Model N4
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acdeh

abdeg

adceh

abdeh

acdeg

adceg

adbeh

acdefdbeh

adbeg

acdefbdeh

acdefbdeg

acdefdbeg

adcefcdeh

adcefdbeh

adcefbdeg

acdefbdefdbeg

adcefdbeg

adcefbdefbdeg

adcefdbefbdeh

adbefbdefdbeg

adcefdbefcdefdbeg

455

191

177

144

111

82

56

47

38

33

14

11

9

8

5

3

2

2

1

1

1

# trace

1391

a
start register 

request

c
examine 
casually

d
check
ticket

decide reject 
request

e h
end

N4 : fitness = +, precision = +, generalization = -, simplicity = -

a
register 
request

d
examine 
casually

c
check
ticket

decide reject 
request

e h

a c
examine 
casually

d
check
ticket

decide

e g

a d
examine 
casually

c
check
ticket

decide

e g

register 
request

register 
request

pay 
compensation

pay 
compensation

a
register 
request

b d
check
ticket

decide reject 
request

e h

a
register 
request

d b
check
ticket

decide reject 
request

e h

a b d
check
ticket

decide

e g
register 
request

pay 
compensation

examine 
thoroughly

examine 
thoroughly

examine 
thoroughly

… (all 21 variants seen in the log)



Why is process mining such a difficult 
problem?

• There are no negative examples (i.e., a log shows 
what has happened but does not show what could 
not happen).

• Due to concurrency, loops, and choices the search 
space has a complex structure and the log typically 
contains only a fraction of all possible behaviors.

• There is no clear relation between the size of a model 
and its behavior (i.e., a smaller model may generate 
more or less behavior although classical analysis 
and evaluation methods typically assume some 
monotonicity property).
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Analyzing Lasagna 
and Spaghetti 
Processes



How can process mining help?
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• Detect bottlenecks
• Detect deviations
• Performance 

measurement
• Suggest improvements
• Decision support (e.g., 

recommendation and 
prediction)

• Provide mirror
• Highlight important 

problems
• Avoid ICT failures
• Avoid management by 

PowerPoint 
• From “politics” to 

“analytics”



Example of a Lasagna process: WMO 
process of a Dutch municipality 
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Each line corresponds to one of the 528 requests that were handled 
in the period from 4-1-2009 until 28-2-2010. In total there are 5498 
events represented as dots. The mean time needed to handled a 
case is approximately 25 days.



WMO process
(Wet Maatschappelijke Ondersteuning) 

• WMO refers to the social support act that came into 
force in The Netherlands on January 1st, 2007. 

• The aim of this act is to assist people with disabilities 
and impairments. Under the act, local authorities are 
required to give support to those who need it, e.g., 
household help, providing wheelchairs and 
scootmobiles, and adaptations to homes. 

• There are different processes for the different kinds of 
help. We focus on the process for handling requests 
for household help. 

• In a period of about one year, 528 requests for 
household WMO support were received. 

• These 528 requests generated 5498 events.
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C-net discovered using 
heuristic miner (1/3)
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C-net discovered using 
heuristic miner (2/3)
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C-net discovered using 
heuristic miner (3/3)
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Conformance check WMO process (1/3)
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Conformance check WMO process (2/3)
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Conformance check WMO process (3/3)
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The fitness of the discovered process 
is 0.99521667. Of the 528 cases, 496 
cases fit perfectly whereas for 32 
cases there are missing or remaining 
tokens.



Bottleneck analysis WMO process (1/3)
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Bottleneck analysis WMO process (2/3)
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Bottleneck analysis WMO process (3/3)
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flow time of 
approx. 25 days 
with a standard 
deviation of 
approx. 28



Example of a Spaghetti process 
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Spaghetti process describing the diagnosis and treatment of 2765 patients 
in a Dutch hospital. The process model was constructed based on an event 
log containing 114,592 events. There are 619 different activities (taking 
event types into account) executed by 266 different individuals (doctors, 
nurses, etc.).



Fragment
18 activities of the 619 activities (2.9%)
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Another example
(event log of Dutch housing agency)
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The event log contains 208 
cases that generated 5987 
events. There are 74 
different activities.
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How can process mining help?
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• Detect bottlenecks
• Detect deviations
• Performance 

measurement
• Suggest improvements
• Decision support (e.g., 

recommendation and 
prediction)

• Provide mirror
• Highlight important 

problems
• Avoid ICT failures
• Avoid management by 

PowerPoint 
• From “politics” to 

“analytics”
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After this lecture you should be able to:

• Provide an overview of process mining and ProM's 
functionality.

• Discover a Petri net based on a concrete event log using 
the α algorithm.

• Tell about the limitations of the α algorithm.
• Construct event logs (or targeted Petri nets) for which 

the α algorithm produces an incorrect result.
• Explain the delicate balance between overfitting and 

underfitting.
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