
Process Mining: The α
Algorithm

prof.dr.ir. Wil van der Aalst

PAGE 1

Design-time analysis vs run-time analysis

(software)
system

(process)
model

event
logs

models
analyzes

discovery

records
events, e.g.,
messages,

transactions,
etc.

specifies
configures
implements

analyzes

supports/
controls

extension

conformance

“world”

people services

organizations
components

business processes

verification

performance
analysis

validation

design-time
analysis

run-time
analysis

e.g., systems like
WebSphere,
Oracle, TIBCO/
Staffware, SAP,
FLOWer, etc.

e.g., dedicated formats
such as IBM’s
Common Event
Infrastructure (CEI) and
MXML or proprietary
formats stored in flat
files or database
tables.

e.g. process models
represented in BPMN,
BPEL, EPCs, Petri nets,
UML AD, etc. or other
types of models such as
social networks,
organizational networks,
decision trees, etc.

PAGE 2

Relevant material

1. Jörg Desel, Wolfgang Reisig: Place/Transition Petri Nets. Petri
Nets 1996: 122-173. DOI: 10.1007/3-540-65306-6_15
http://www.springerlink.com/content/x6hn592l35866lu8/fulltext.pdf

2. Tadao Murata, Petri Nets: Properties, Analysis and
Applications, Proceedings of the IEEE. 77(4): 541-580, April,
1989. http://dx.doi.org/10.1109/5.24143
http://ieeexplore.ieee.org/iel1/5/911/00024143.pdf

3. Wil van der Aalst: Process Mining: Discovery, Conformance
and Enhancement of Business Processes, Springer Verlag
2011 (chapters 1 & 5)

a) Chapter 1: DOI: 10.1007/978-3-642-19345-3_1
http://www.springerlink.com/content/p443h219v3u3537l/fulltext.pdf

b) Chapter 5: DOI: 10.1007/978-3-642-19345-3_5
http://www.springerlink.com/content/u58h17n3167p0x1u/fulltext.pdf

c) Events logs: http://www.processmining.org/book/

Today's focus is on 3.

PAGE 3

Process Discovery

Process discovery

PAGE 5

software
system

(process)
model

event
logs

models
analyzes

discovery

records
events, e.g.,
messages,

transactions,
etc.

specifies
configures
implements

analyzes

supports/
controls

enhancement

conformance

“world”

people machines

organizations
components

business
processes

Process discovery = Play-In

PAGE 6

event log process model

Play-In

event logprocess model

Play-Out

event log process model

Replay

• extended model
showing times,
frequencies, etc.

• diagnostics
• predictions
• recommendations

Example

PAGE 7

a

b

c

de

p2

end

p4

p3p1

start

Event log contains all possible
traces of model and vice versa.

Another example

PAGE 8

a

b

c

df

p2

end

p4

p3p1

start

e

p5

Generalization: event log contains only subset
of all possible traces of model.

Notation is less relevant (e.g. BPMN)

PAGE 9

a

b

c

de

p2

end

p4

p3p1

start

a

start end

b

c

e

d

Another BPMN example

PAGE 10

a

b

c

df

p2

end

p4

p3p1

start

e

p5

a

start end

b

c

e

d

f

Challenge

• In general, there is a trade-off between the following
four quality criteria:

1.Fitness: the discovered model should allow for the
behavior seen in the event log.

2.Precision (avoid underfitting): the discovered model
should not allow for behavior completely unrelated
to what was seen in the event log.

3.Generalization (avoid overfitting): the discovered
model should generalize the example behavior seen
in the event log.

4.Simplicity: the discovered model should be as
simple as possible.

PAGE 11

α Algorithm

Process Discovery:
example of algorithm

PAGE 13

α

PAGE 14

>,→,||,# relations

• Direct succession: x>y iff
for some case x is directly
followed by y.

• Causality: x→y iff x>y and
not y>x.

• Parallel: x||y iff x>y and
y>x

• Choice: x#y iff not x>y and
not y>x.

a>b
a>c
a>e
b>c
b>d
c>b
c>d
e>d

a→b
a→c
a→e
b→d
c→d
e→d

b||c
c||b

abcd
acbd
aed

b#e
e#b
c#e
a#d
…

PAGE 15

Basic Idea Used by α Algorithm (1)

a b

(a) sequence pattern: a→b

PAGE 16

Basic Idea Used by α Algorithm (2)

a

b

c

(b) XOR-split pattern:
a→b, a→c, and b#c

a

b

c

(c) XOR-join pattern:
a→c, b→c, and a#b

a

b

c

(b) XOR-split pattern:
a→b, a→c, and b#c

PAGE 17

Basic Idea Used by α Algorithm (3)

a

b

c

(d) AND-split pattern:
a→b, a→c, and b||c

a

b

c

(e) AND-join pattern:
a→c, b→c, and a||b

a

b

c

(d) AND-split pattern:
a→b, a→c, and b||c

Example Revisited

PAGE 18

a

b

c

de

p2

end

p4

p3p1

start

Result produced by α algorithm

a>b
a>c
a>e
b>c
b>d
c>b
c>d
e>d

a→b
a→c
a→e
b→d
c→d
e→d

b||c
c||b

b#e
e#b
c#e
a#d
…

Footprint of L1

PAGE 19

a

b

c

de

p2

end

p4

p3p1

start

Footprint of L2

PAGE 20

a

b

c

df

p2

end

p4

p3p1

start

e

p5

Simple patterns

PAGE 21

a b

(a) sequence pattern: a→b

a

b

c

(b) XOR-split pattern:
a→b, a→c, and b#c

a

b

c

(c) XOR-join pattern:
a→c, b→c, and a#b

a

b

c

(d) AND-split pattern:
a→b, a→c, and b||c

a

b

c

(e) AND-join pattern:
a→c, b→c, and a||b

Algorithm

PAGE 22

Let L be an event log over T. α(L) is defined as follows.
1. TL = { t ∈ T | ∃σ ∈ L t ∈ σ},
2. TI = { t ∈ T | ∃σ ∈ L t = first(σ) },
3. TO = { t ∈ T | ∃σ ∈ L t = last(σ) },
4. XL = { (A,B) | A ⊆ TL ∧ A ≠ ø ∧ B ⊆ TL ∧ B ≠ ø ∧

∀a ∈ A∀b ∈ B a →L b ∧ ∀a1,a2 ∈ A a1#L a2 ∧ ∀b1,b2 ∈ B b1#L b2 },
5. YL = { (A,B) ∈ XL | ∀(A′,B′) ∈ XL

A ⊆ A′ ∧B ⊆ B′⇒ (A,B) = (A′,B′) },
6. PL = { p(A,B) | (A,B) ∈ YL } ∪{iL,oL},
7. FL = { (a,p(A,B)) | (A,B) ∈ YL ∧ a ∈ A } ∪ { (p(A,B),b) | (A,B) ∈

YL ∧ b ∈ B } ∪{ (iL,t) | t ∈ TI} ∪{ (t,oL) | t ∈ TO}, and
8. α(L) = (PL,TL,FL).

Key idea: find places

PAGE 23

a1

...

a2

am

b1

b2

bn

p(A,B) ...

A={a1,a2, … am} B={b1,b2, … bn}

4. XL = { (A,B) | A ⊆ TL ∧ A ≠ ø ∧ B ⊆ TL ∧ B ≠ ø ∧
∀a ∈ A∀b ∈ B a →L b ∧ ∀a1,a2 ∈ A a1#L a2 ∧ ∀b1,b2 ∈ B b1#L b2 },

5. YL = { (A,B) ∈ XL | ∀(A′,B′) ∈ XL
A ⊆ A′ ∧B ⊆ B′⇒ (A,B) = (A′,B′) },

Places as footprints

PAGE 24

a1

...

a2

am

b1

b2

bn

p(A,B) ...

A={a1,a2, … am} B={b1,b2, … bn}

PAGE 25

a

b

c

de

p2

end

p4

p3p1

start

Another event log L3

PAGE 26

Model for L3

PAGE 27

a b

c

d

e

p({a,f},{b})iL

p({b},{c})

p({b},{d})

p({c},{e})

p({d},{e})

g

oLp({e},{f,g})

f

Another event log L4

PAGE 28

b

c

p({a,b},{c}) oL

a

iL e

d

p({c},{d,e})

Event log L5

PAGE 29

PAGE 30

Discovered model

PAGE 31

b

p({a},{e})

oLaiL

c

e

f

d

p({e},{f})

p({b},{c,f})p({a,d},{b})

p({c},{d})

Limitations of the α
Algorithm

Limitation of α algorithm
(implicit places)

PAGE 33

g

a

c

d

e

f
b

p1

p2

Green places are implicit!

Limitation of α algorithm
(loops of length 1)

PAGE 34

a c

b

a c

b

Limitation of α algorithm
(loops of length 2)

PAGE 35

a b d

c

a

b

d

c

Limitation of α algorithm
(non-local dependencies)

PAGE 36

b

c

a

e

dp1

p2

Green places are not discovered!

Difficult constructs for α algorithm

PAGE 37

a

b

c

Taking the transactional life-cycle into
account

PAGE 38

start

assigned

assign

running

complete

a

start

running

complete

b

suspended

suspend

resume

start

assigned

assign

running

complete

c

Rediscovering process models

PAGE 39

The rediscovery problem: Is the discovered model
N’ equivalent to the original model N?

discovered
process
model

original process
model event

log

simulate discover

N=N’ ?
N N’

Challenge: finding the right
representational bias

PAGE 40

a a

start endp

There is no WF-net with unique visible labels that exhibits this behavior.

Another example

PAGE 41

a b

start endp1

c

τ

p1

(a)

a b

start endp1

c

p1

(b)

a

a b

start endp1

c

p1

(c)

There is no WF-
net with unique
visible labels
that exhibits this
behavior.

Challenge: noise and incompleteness

• To discover a suitable process model it is
assumed that the event log contains a
representative sample of behavior.

• Two related phenomena:
−Noise: the event log contains rare and

infrequent behavior not representative for
the typical behavior of the process.

− Incompleteness: the event log contains
too few events to be able to discover
some of the underlying control-flow
structures.

PAGE 42

More on incompleteness

PAGE 43

See also chapter 3 (cross-validation, precision, recall, etc.)

PAGE 44

Challenge: Balancing
Between Underfitting and
Overfitting

Challenge: four competing quality
criteria

PAGE 45

process
discovery

fitness

precisiongeneralization

simplicity

“able to replay event log” “Occam’s razor”

“not overfitting the log” “not underfitting the log”

Flower model

PAGE 46

g

a
c

d

e
f

b

start end

h

PAGE 47

What is the best model?

A D

C

EB

A D

C

EB

ACD
ACE
BCE
BCD

99
0
85
0

http://upload.wikimedia.org/wikipedia/commons/0/03/Green_check.svg�

PAGE 48

What is the best model?

A D

C

EB

A D

C

EB

ACD
ACE
BCE
BCD

99
88
85
78

http://upload.wikimedia.org/wikipedia/commons/0/03/Green_check.svg�

PAGE 49

What is the best model?

A D

C

EB

A D

C

EB

ACD
ACE
BCE
BCD

99
2
85
3

Example: one log four models

PAGE 50

a
start register

request

bexamine
thoroughly

cexamine
casually

d check
ticket

decide

pay
compensation

reject
request

reinitiate
requeste

g

hf
end

a
start register

request

c
examine
casually

d
check
ticket

decide reject
request

e h
end

N3 : fitness = +, precision = -, generalization = +, simplicity = +

N2 : fitness = -, precision = +, generalization = -, simplicity = +

a
start register

request

b
examine

thoroughly

c
examine
casually

d
check ticket

decide

pay
compensation

reject
request

reinitiate
request

e

g

h

f

end

N1 : fitness = +, precision = +, generalization = +, simplicity = +

a
start register

request

c
examine
casually

d
check
ticket

decide reject
request

e h
end

N4 : fitness = +, precision = +, generalization = -, simplicity = -

a
register
request

d
examine
casually

c
check
ticket

decide reject
request

e h

a c
examine
casually

d
check
ticket

decide

e g

a d
examine
casually

c
check
ticket

decide

e g

register
request

register
request

pay
compensation

pay
compensation

a
register
request

b d
check
ticket

decide reject
request

e h

a
register
request

d b
check
ticket

decide reject
request

e h

a b d
check
ticket

decide

e g
register
request

pay
compensation

examine
thoroughly

examine
thoroughly

examine
thoroughly

… (all 21 variants seen in the log)

acdeh

abdeg

adceh

abdeh

acdeg

adceg

adbeh

acdefdbeh

adbeg

acdefbdeh

acdefbdeg

acdefdbeg

adcefcdeh

adcefdbeh

adcefbdeg

acdefbdefdbeg

adcefdbeg

adcefbdefbdeg

adcefdbefbdeh

adbefbdefdbeg

adcefdbefcdefdbeg

455

191

177

144

111

82

56

47

38

33

14

11

9

8

5

3

2

2

1

1

1

trace

1391

process
discovery

fitness

precisiongeneralization

simplicity

“able to replay event log” “Occam’s razor”

“not overfitting the log” “not underfitting the log”

Model N1

PAGE 51

acdeh

abdeg

adceh

abdeh

acdeg

adceg

adbeh

acdefdbeh

adbeg

acdefbdeh

acdefbdeg

acdefdbeg

adcefcdeh

adcefdbeh

adcefbdeg

acdefbdefdbeg

adcefdbeg

adcefbdefbdeg

adcefdbefbdeh

adbefbdefdbeg

adcefdbefcdefdbeg

455

191

177

144

111

82

56

47

38

33

14

11

9

8

5

3

2

2

1

1

1

trace

1391

a
start register

request

b
examine

thoroughly

c
examine
casually

d
check ticket

decide

pay
compensation

reject
request

reinitiate
request

e

g

h

f

end

N1 : fitness = +, precision = +, generalization = +, simplicity = +

Model N2

PAGE 52

acdeh

abdeg

adceh

abdeh

acdeg

adceg

adbeh

acdefdbeh

adbeg

acdefbdeh

acdefbdeg

acdefdbeg

adcefcdeh

adcefdbeh

adcefbdeg

acdefbdefdbeg

adcefdbeg

adcefbdefbdeg

adcefdbefbdeh

adbefbdefdbeg

adcefdbefcdefdbeg

455

191

177

144

111

82

56

47

38

33

14

11

9

8

5

3

2

2

1

1

1

trace

1391

a
start register

request

c
examine
casually

d
check
ticket

decide reject
request

e h
end

N2 : fitness = -, precision = +, generalization = -, simplicity = +

Model N3

PAGE 53

acdeh

abdeg

adceh

abdeh

acdeg

adceg

adbeh

acdefdbeh

adbeg

acdefbdeh

acdefbdeg

acdefdbeg

adcefcdeh

adcefdbeh

adcefbdeg

acdefbdefdbeg

adcefdbeg

adcefbdefbdeg

adcefdbefbdeh

adbefbdefdbeg

adcefdbefcdefdbeg

455

191

177

144

111

82

56

47

38

33

14

11

9

8

5

3

2

2

1

1

1

trace

1391

a
start register

request

bexamine
thoroughly

cexamine
casually

d check
ticket

decide

pay
compensation

reject
request

reinitiate
requeste

g

hf
end

N3 : fitness = +, precision = -, generalization = +, simplicity = +

Model N4

PAGE 54

acdeh

abdeg

adceh

abdeh

acdeg

adceg

adbeh

acdefdbeh

adbeg

acdefbdeh

acdefbdeg

acdefdbeg

adcefcdeh

adcefdbeh

adcefbdeg

acdefbdefdbeg

adcefdbeg

adcefbdefbdeg

adcefdbefbdeh

adbefbdefdbeg

adcefdbefcdefdbeg

455

191

177

144

111

82

56

47

38

33

14

11

9

8

5

3

2

2

1

1

1

trace

1391

a
start register

request

c
examine
casually

d
check
ticket

decide reject
request

e h
end

N4 : fitness = +, precision = +, generalization = -, simplicity = -

a
register
request

d
examine
casually

c
check
ticket

decide reject
request

e h

a c
examine
casually

d
check
ticket

decide

e g

a d
examine
casually

c
check
ticket

decide

e g

register
request

register
request

pay
compensation

pay
compensation

a
register
request

b d
check
ticket

decide reject
request

e h

a
register
request

d b
check
ticket

decide reject
request

e h

a b d
check
ticket

decide

e g
register
request

pay
compensation

examine
thoroughly

examine
thoroughly

examine
thoroughly

… (all 21 variants seen in the log)

Why is process mining such a difficult
problem?

• There are no negative examples (i.e., a log shows
what has happened but does not show what could
not happen).

• Due to concurrency, loops, and choices the search
space has a complex structure and the log typically
contains only a fraction of all possible behaviors.

• There is no clear relation between the size of a model
and its behavior (i.e., a smaller model may generate
more or less behavior although classical analysis
and evaluation methods typically assume some
monotonicity property).

PAGE 55

Analyzing Lasagna
and Spaghetti
Processes

How can process mining help?

PAGE 57

• Detect bottlenecks
• Detect deviations
• Performance

measurement
• Suggest improvements
• Decision support (e.g.,

recommendation and
prediction)

• Provide mirror
• Highlight important

problems
• Avoid ICT failures
• Avoid management by

PowerPoint
• From “politics” to

“analytics”

Example of a Lasagna process: WMO
process of a Dutch municipality

PAGE 58

Each line corresponds to one of the 528 requests that were handled
in the period from 4-1-2009 until 28-2-2010. In total there are 5498
events represented as dots. The mean time needed to handled a
case is approximately 25 days.

WMO process
(Wet Maatschappelijke Ondersteuning)

• WMO refers to the social support act that came into
force in The Netherlands on January 1st, 2007.

• The aim of this act is to assist people with disabilities
and impairments. Under the act, local authorities are
required to give support to those who need it, e.g.,
household help, providing wheelchairs and
scootmobiles, and adaptations to homes.

• There are different processes for the different kinds of
help. We focus on the process for handling requests
for household help.

• In a period of about one year, 528 requests for
household WMO support were received.

• These 528 requests generated 5498 events.
PAGE 59

C-net discovered using
heuristic miner (1/3)

PAGE 60

C-net discovered using
heuristic miner (2/3)

PAGE 61

C-net discovered using
heuristic miner (3/3)

PAGE 62

Conformance check WMO process (1/3)

PAGE 63

Conformance check WMO process (2/3)

PAGE 64

Conformance check WMO process (3/3)

PAGE 65

The fitness of the discovered process
is 0.99521667. Of the 528 cases, 496
cases fit perfectly whereas for 32
cases there are missing or remaining
tokens.

Bottleneck analysis WMO process (1/3)

PAGE 66

Bottleneck analysis WMO process (2/3)

PAGE 67

Bottleneck analysis WMO process (3/3)

PAGE 68

flow time of
approx. 25 days
with a standard
deviation of
approx. 28

Example of a Spaghetti process

PAGE 69

Spaghetti process describing the diagnosis and treatment of 2765 patients
in a Dutch hospital. The process model was constructed based on an event
log containing 114,592 events. There are 619 different activities (taking
event types into account) executed by 266 different individuals (doctors,
nurses, etc.).

Fragment
18 activities of the 619 activities (2.9%)

PAGE 70

Another example
(event log of Dutch housing agency)

PAGE 71

The event log contains 208
cases that generated 5987
events. There are 74
different activities.

PAGE 72

How can process mining help?

PAGE 73

• Detect bottlenecks
• Detect deviations
• Performance

measurement
• Suggest improvements
• Decision support (e.g.,

recommendation and
prediction)

• Provide mirror
• Highlight important

problems
• Avoid ICT failures
• Avoid management by

PowerPoint
• From “politics” to

“analytics”

PAGE 74

After this lecture you should be able to:

• Provide an overview of process mining and ProM's
functionality.

• Discover a Petri net based on a concrete event log using
the α algorithm.

• Tell about the limitations of the α algorithm.
• Construct event logs (or targeted Petri nets) for which

the α algorithm produces an incorrect result.
• Explain the delicate balance between overfitting and

underfitting.

	Process Mining: The α Algorithm
	Design-time analysis vs run-time analysis
	Relevant material
	Slide Number 4
	Process Discovery
	Process discovery
	Process discovery = Play-In
	Example
	Another example
	Notation is less relevant (e.g. BPMN)
	Another BPMN example
	Challenge
	α Algorithm
	Process Discovery: example of algorithm
	>,,||,# relations
	Basic Idea Used by α Algorithm (1)
	Basic Idea Used by α Algorithm (2)
	Basic Idea Used by α Algorithm (3)
	Example Revisited
	Footprint of L1
	Footprint of L2
	Simple patterns
	Algorithm
	Key idea: find places
	Places as footprints
	Slide Number 26
	Another event log L3
	Model for L3
	Another event log L4
	Event log L5
	Slide Number 31
	Discovered model
	Limitations of the α Algorithm
	Limitation of α algorithm�(implicit places)
	Limitation of α algorithm�(loops of length 1)
	Limitation of α algorithm�(loops of length 2)
	Limitation of α algorithm�(non-local dependencies)
	Difficult constructs for α algorithm
	Taking the transactional life-cycle into account
	Rediscovering process models
	Challenge: finding the right representational bias
	Another example
	Challenge: noise and incompleteness
	More on incompleteness
	Challenge: Balancing Between Underfitting and Overfitting
	Challenge: four competing quality criteria
	Flower model
	What is the best model?
	What is the best model?
	What is the best model?
	Example: one log four models
	Model N1
	Model N2
	Model N3
	Model N4
	Why is process mining such a difficult problem?
	Analyzing Lasagna and Spaghetti Processes
	How can process mining help?
	Example of a Lasagna process: WMO process of a Dutch municipality
	WMO process�(Wet Maatschappelijke Ondersteuning)
	C-net discovered using heuristic miner (1/3)
	C-net discovered using heuristic miner (2/3)
	C-net discovered using heuristic miner (3/3)
	Conformance check WMO process (1/3)
	Conformance check WMO process (2/3)
	Conformance check WMO process (3/3)
	Bottleneck analysis WMO process (1/3)
	Bottleneck analysis WMO process (2/3)
	Bottleneck analysis WMO process (3/3)
	Example of a Spaghetti process
	Fragment�18 activities of the 619 activities (2.9%)
	Another example�(event log of Dutch housing agency)
	Slide Number 73
	How can process mining help?
	After this lecture you should be able to:

